

DIVERSA PROTEIN DELIVERY NANOPARTICLES

Enhancing intracellular and extracellular delivery of a **broad** range of proteins

USER PROTOCOL - #DIV031

ABOUT THE NANOPARTICLES1				
OVERVIEW				
COMPONENTS 1				
STORAGE				
EQUIPMENT AND MATERIALS REQUIRED BUT NOT SUPPLIED 2				
CONSIDERATIONS BEFORE STARTING				
DIVERSA PROTEIN DELIVERY NANOPARTICLES PROTOCOL3				
PROTEIN TAGGING STEP				
PROTEIN PURIFICATION STEP				
FORMULATION STEP				
PROTEIN ASSOCIATION STEP				
X-GAL STAINING FOR β -GAL DELIVERY				
EXAMPLE PROTOCOL				
TABLES AND TECHNICAL NOTES9				
DIV-LINKER VOLUME CALCULATOR				
NANOPARTICLES VOLUME CALCULATOR				
PROTEIN-TAG VOLUME CALCULATOR10				
TABLE OF EXAMPLES11				
FREQUENTLY ASKED QUESTIONS				
ONLINE RESOURCES				
CHANGELOG				

ABOUT THE NANOPARTICLES

OVERVIEW

DIVERSA PROTEIN DELIVERY NANOPARTICLES are a biocompatible, biodegradable, and cell-friendly technology designed to enhance the intracellular and extracellular delivery of proteins, paving the way for clinical translation.

DIVERSA PROTEIN DELIVERY NANOPARTICLES associate proteins very efficiently, irrespective of their molecular weight and isoelectric point. A tag in the protein(s) of interest is required for efficient association with **DIVERSA PROTEIN DELIVERY NANOPARTICLES** without compromising protein structure or activity.

DIVERSA PROTEIN DELIVERY NANOPARTICLES enable efficient intracellular delivery of proteins, ensuring their release within the cell after uptake, while also supporting extracellular applications.

COMPONENTS

- 1x DIV-LINKER.
- 1x DIV031 vial for reconstitution.
- 1x DIVTECH vial for preparation of DIVERSA PROTEIN DELIVERY NANOPARTICLES.
- 1x Amicon Ultra Centrifugal Filter 0.5 mL- 10 kDa.
- 2x Collector microtubes.
- 2x Tips for 1 mL micropipette.

STORAGE

Before formulating, store the vials at -20 °C. Once formulated, the preparation should be stored at 2-8 °C for up to 60 days without the protein, or up to 2 days with the associated protein.

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

EQUIPMENT AND MATERIALS REQUIRED BUT NOT SUPPLIED

- 1 mL micropipette.
- 0.6 mL microtubes.
- 1.5 mL microtubes.
- Ultrapure water.
- Ethanol (EtOH) 96%.
- PBS 2 mM at pH 7.4.
- DMSO
- Protein/s of interest.

CONSIDERATIONS BEFORE STARTING

- The proteins must be tagged with the **DIV-LINKER** for efficient association with **DIVERSA**'s nanoparticles.
- The following protocol is optimized for the preparation of 1.5 mL of DIVERSA PROTEIN nanoparticles.
- **DIVERSA** cannot guarantee the optimal formulation performance if any modifications are made to the protocol.
- It is recommended to use **DIVERSA**'s nanoparticles (prior association of the protein) within 60 days of preparation for optimal performance.
- After protein association, it is recommended to use DIVERSA PROTEIN nanoparticles within 48 hours of preparation for optimal performance.
- **DIVERSA PROTEIN** nanoparticles are stable in cell culture media under the following tested conditions: for at least 24 h at 37 °C in DMEM and RPMI, supplemented with 10% (v/v) of FBS and 1% (v/v) of penicillin/streptomycin.
- Do NOT use any buffer containing Triton-X, SDS or Tween-20 for the preparation of DIVERSA PROTEIN nanoparticles.
- Once formulated, do NOT freeze **DIVERSA PROTEIN** nanoparticles.
- Do NOT heat over 90°C DIVERSA PROTEIN nanoparticles.

DIVERSA PROTEIN DELIVERY NANOPARTICLES PROTOCOL

PROTEIN TAGGING STEP

Click here to view the video on the preparation of DIVERSA PROTEIN DELIVERY NANOPARTICLES.

Please check the EQUATIONS found in the Tables and Technical Notes section before starting.

Note that this step requires an overnight incubation period.

- 1. Add 40 μ L of DMSO to the DIV-LINKER vial. Gently pipette up and down until fully dissolved.
- Calculate the required volume of DIV-LINKER to tag the Desired Protein Amount for association with DIVERSA's nanoparticles, based on your experimental needs (refer to EQUATION 1 and EQUATION 2 in <u>Tables and Technical Notes</u>). Transfer the calculated volume of DIV-LINKER into a microtube.

Note: Store the leftover DIV-LINKER at -20 °C and use it within 3 months.

- 3. Add the protein to the microtube containing the DIV-LINKER and adjust the final volume to 500 μ L with PBS. Vortex gently.
 - Note₁: If your protein is in powder form, we recommend dissolving it in PBS 2 mM at pH 7.4. Note₂: DO NOT use buffers containing β -mercaptoethanol, ammonium salts, or primary amines.
- 4. Incubate the PROTEIN with the DIV-LINKER for 6 hours at room temperature (RT), followed by overnight incubation at 2-8 °C. After this step, the protein is successfully tagged and referred to as PROTEIN-TAG.

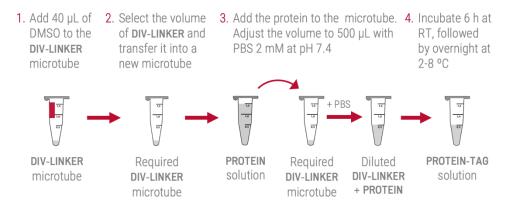
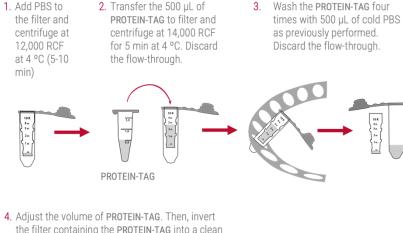


Figure 1. DIVERSA PROTEIN DELIVERY NANOPARTICLES PROTOCOL: PROTEIN TAGGING STEP.

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.


DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

PROTEIN PURIFICATION STEP

- 1. Equilibrate the membrane of the provided Amicon Ultra Centrifugal Filter (0.5 mL-10 kDa) by adding PBS, ensuring it is fully covered. Centrifuge at 14,000 RCF at 4 °C (5-10 min). Discard the flow-through.
- 2. Transfer the 500 μ L of PROTEIN-TAG to the filter and centrifuge at 14,000 RCF for 5 min at 4 °C. Discard the flow-through.
- 3. Wash the PROTEIN-TAG four times with 500 μ L of cold PBS, following the same centrifugation settings.
- 4. After the final wash, adjust the volume of PROTEIN-TAG for association with DIVERSA nanoparticles (refer to EQUATION 3 and EQUATION 4 of <u>Tables and Technical Notes</u> for volume calculations):
 - a) If concentration is required: Perform an additional centrifugation cycle to achieve the desired volume. Invert the filter into a clean collector microtube and centrifuge at 1,000 RCF for 2 min at 4 °C to collect the PROTEIN-TAG.
 - b) If dilution is required: Invert the filter into a clean microtube, centrifuge at 1,000 RCF for 2 min at 4 °C, and dilute the **PROTEIN-TAG** with PBS to the required volume.

The **PROTEIN-TAG** is now ready to use in the <u>Protein Association Step</u> or can be stored at -20 °C for up to 1 month.

 Adjust the volume of PROTEIN-TAG. Then, invert the filter containing the PROTEIN-TAG into a clean collector microtube. Centrifuge at 1,000 RCF for 2 min at 4 °C.

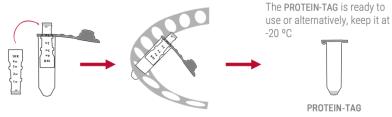


Figure 2. DIVERSA DELIVERY NANOPARTICLES PROTOCOL: PROTEIN PURIFICATION STEP.

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

FORMULATION STEP

- 1. Add 100 µL of EtOH in the DIV031 vial. Gently pipette up and down.
- 2. Add 900 µL of ultrapure water into the **DIVTECH** vial.
- **3.** Transfer the entire volume from **DIV031** vial to the **DIVTECH** vial using a 1 mL micropipette and the provided tip.

Note: Before adding the volume from **DIV031** vial to the **DIVTECH** vial, set the micropipette at the maximum volume, and add the solution with a sudden, vigorous downward motion. Pipette up and down for 5-10 times with confidence.

The **DIVERSA**'s nanoparticles are now ready to use or can be stored at 2-8 °C for up to 60 days. They can be used in the <u>Protein Association Step</u> either all at once for the formulation of a single protein or split into fractions for different timepoints or proteins, depending on the experimental needs.

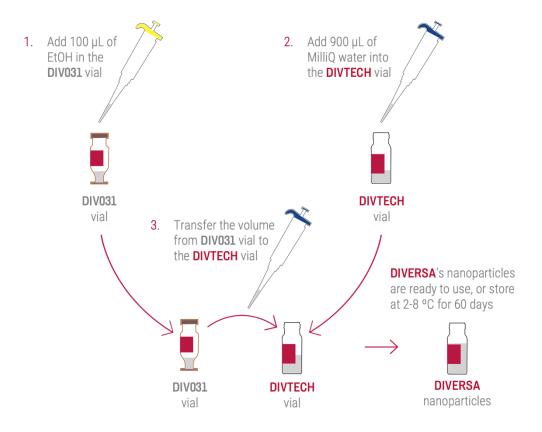


Figure 3. DIVERSA PROTEIN DELIVERY NANOPARTICLES: FORMULATION STEP.

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

 $\label{thm:com} \begin{tabular}{ll} Technical support: email: $\underbrace{support@diversatechnologies.com} & | & \underline{www.diversatechnologies.com} \\ | & \underline{www.diversatec$

PROTEIN ASSOCIATION STEP

Note: This step requires an overnight incubation period.

- 1. Transfer the calculated volume of **DIVERSA**'s nanoparticles (refer to **EQUATION 3** of <u>Tables and Technical Notes</u>) to a microtube.
- 2. Add the required volume of the PROTEIN-TAG (refer to EQUATION 4 of <u>Tables</u> and <u>Technical Notes</u>) to the microtube in a sudden vigorous movement. Pipette up and down for 5-10 times with confidence.
- 3. Incubate the **DIVERSA PROTEIN** nanoparticles at room temperature (RT) for 4 h, followed by an overnight incubation at 2-8 °C.

The **DIVERSA PROTEIN** nanoparticles are now ready to use or can be stored at 2-8 °C for up to 2 days.

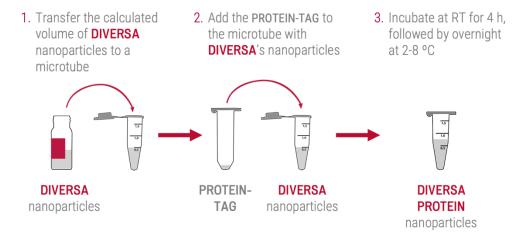


Figure 4. DIVERSA PROTEIN DELIVERY NANOPARTICLES: PROTEIN ASSOCIATION STEP

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

X-GAL STAINING FOR β -GAL DELIVERY

EXAMPLE PROTOCOL

Note that the **DIVERSA PROTEIN** formulation should be ready for the experiment. Please review the protocols prior to starting. The <u>PROTEIN TAGGING</u> and the <u>PROTEIN ASSOCIATION</u> protocols require an overnight incubation period.

1. Seed the recommended number of cells in a 24-well plate with 500 μ L of complete medium the day before the experiment. Cells should be 70-80% confluent on the day of the experiment.

Note₁: for *in vitro* experiments, the adherent cells must be between 70-80% confluent on the day of the experiment. However, optimizations should be performed depending on the cell type and the length of the experiment.

- Start with the PROTEIN TAGGING & PURIFICATION STEP.
- 3. In this protocol, the amount of β -Gal protein (540 kDa) to associate with DIVERSA's nanoparticles is set to 190 μg .
- 4. The calculation of the needed volume of DIV-LINKER for 190 μ g of β -Gal protein (540 kDa) according to EQUATION 1 and EQUATION 2 of <u>Tables and Technical Notes</u> is 4 μ L.

Max Protein (
$$\mu g$$
) = 3.54 × 540 = 1912 μg

Volume of DIV-LINKER needed =
$$\frac{40 \times 190}{1912} = 4 \mu L$$

- 5. Transfer $4 \mu L$ of **DIV-LINKER** into a microtube and add 190 μg of β -Gal protein to tag (38 μL of a stock solution at 5 mg/mL). Adjust the final volume to 500 μL with 458 μL of PBS. Vortex gently.
- 6. Now finish the <u>PROTEIN TAGGING STEP</u> and follow the steps 1-3 of the <u>PROTEIN PURIFICATION STEP</u>.

Note: After the final wash, a volume of 86 μ L of β -Gal-TAG is obtained.

7. The calculated volume of <code>DIVERSA</code>'s nanoparticles to associate the 190 μg of β -Gal-TAG, according to <code>EQUATION 3</code> of <u>Tables and Technical Notes</u>, is 100 μL .

Volume of DIVERSA nanoparticles (mL) =
$$\frac{190}{1912} \times 1 \text{ mL} = 0.1 \text{ mL} = 100 \text{ }\mu\text{L}$$

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

8. The calculated final volume of β -Gal-TAG to associate with 100 μ L of DIVERSA's nanoparticles, according to EQUATION 4 of <u>Tables and Technical Notes</u>, is 50 μ L.

Volume of
$$\beta\text{--}GAL\text{--}TAG~(\mu L) = ~\frac{100~\mu L}{2} = 50~\mu L$$

- 9. Concentrate the β -Gal-TAG solution from 86 μ L to 50 μ L with an additional centrifugation cycle. Then, invert the filter into a clean collector microtube and centrifuge at 1,000 RCF for 2 min at 4 °C to collect the 50 μ L of β -Gal-TAG. The β -Gal-TAG is now ready to use in the DIVERSA PROTEIN ASSOCIATION STEP or can be stored at -20 °C for up to 1 month.
- 10. Formulate **DIVERSA**'s nanoparticles following the steps 1-3 of the **FORMULATION STEP**.
- 11. Associate 50 μ L of β -Gal-TAG with 100 μ L of DIVERSA's nanoparticles following the steps 1-3 of the <u>PROTEIN ASSOCIATION STEP</u>. The DIVERSA β -Gal DELIVERY NANOPARTICLES are ready to use or can be stored at 2-8 °C for to up 2 days.
- 12. The day of the experiment, add 1.6 μ L of **DIVERSA** β -Gal nanoparticles (2 μ g of β -Gal) per well in a final volume of 250 μ L of complete medium (supplemented with 10% (v/v) of FBS and 1% (v/v) of penicillin/streptomycin).
 - **Note:** The volume of **DIVERSA**'s nanoparticles should be adjusted based on your specific protein and experiment. Consider testing different volumes.
- 13. Incubate the cells at 37 °C in a CO₂ incubator under standard conditions for at least 2-4 hours.
 - **Note:** Depending on the type of readout assay performed, shorter or longer incubation time may influence delivery efficiency.
- **14.** After incubation, remove the medium, wash the cells twice with DPBS 1X for 5 minutes.
- 15. Fix the cells with 2% (v/v) PFA; 0.2% (v/v) Glutaraldehyde in DPBS 1X for 15 minutes at RT.
- **16**. Remove the fixing solution, wash the cells twice with DPBS for 5 minutes.
- 17. Add X-GAL staining solution containing 1 mg/ml X-gal (just enough to the cover cells) and incubate overnight at 37 °C in darkness.
- 18. Remove the staining solution, wash the cells twice with distilled water.
- 19. Add 1X DPBS and check the cells to determine whether cells are turning blue. For long term storage, wrap in parafilm and store at 2-8°C.

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

TABLES AND TECHNICAL NOTES

DIV-LINKER VOLUME CALCULATOR

EQUATION 1 calculates the maximum amount of protein that can be tagged with the provided 40 μ L of **DIV-LINKER**, considering the protein's molecular weight (MW).

Max Protein (
$$\mu$$
g) = 3.54 × MW of your protein (kDa)

Example: For a protein with a molecular weight of 35,000 g/mol (35 kDa), the maximum amount of protein you can tag with the 40 μ L of **DIV-LINKER** is:

Max Protein (
$$\mu g$$
) = 3.54 \times 35 = 124 μg

EQUATION 2 calculates the proportionally smaller volume of linker needed if you wish to tag a **smaller amount of protein**, based on your experimental needs and the intended amount of protein to associate with the nanoparticles.

Volume of LINKER needed (
$$\mu$$
L) =
$$\frac{40 \ \mu\text{L of LINKER} \times \text{Desired Protein Amount (}\mu\text{g})}{\text{Max Protein (}\mu\text{g})}$$

Example: If you only need 50 μ g of your protein (35 kDa) for your experiments, the volume of DIV-LINKER required is 16.13 μ L.

Volume of LINKER needed =
$$\frac{40 \times 50}{124}$$
 = 16.13 μL

NANOPARTICLES VOLUME CALCULATOR

EQUATION 3 calculates the volume of **DIVERSA**'s nanoparticles needed to associate the Desired Protein Amount.

Volume of DIVERSA nanoparticles (mL) =
$$\frac{\text{Desired Protein Amount (µg)}}{\text{Max protein (µg)}} \times 1 \, mL$$

Note: The minimum volume of DIVERSA's nanoparticles is 30 μ L. If EQUATION 3 yields a smaller volume, increase the amount of Desired Protein (μ g).

Example: For associating 50 μ g of a protein of 35 kDa, the volume of **DIVERSA**'s formulation required will be:

Volume of DIVERSA nanoparticles (mL) =
$$\frac{50}{124} \times 1 = 0.403 \text{ mL} = 403 \text{ }\mu\text{L}$$

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

PROTEIN-TAG VOLUME CALCULATOR

EQUATION 4 calculates the final volume of **PROTEIN (PROTEIN-TAG)** needed for association with the volume of **DIVERSA**'s nanoparticles.

Volume of PROTEIN (
$$\mu$$
L) = $\frac{\text{Volume of DIVERSA's nanoparticles (}\mu\text{L})}{2}$

Note: The minimum volume of PROTEIN for association is 15 μ L. If EQUATION 4 yields a smaller volume, increase the amount of Desired Protein (μ g) in EQUATION 3.

Example: For 403 µL of DIVERSA's formulation the volume of PROTEIN-TAG required will be:

Volume of PROTEIN (
$$\mu L$$
) = $\frac{403}{2}$ = 201,5 μL

TABLE OF EXAMPLES

Table 1. Examples of required volumes of **DIV-LINKER**, **DIVERSA**'s nanoparticles, and **PROTEIN-TAG** calculated using the provided equations for varying amounts of proteins with different molecular weights (MW).

MW PROTEIN	Amount of PROTEIN ¹	Volume of DIV-LINKER ²	Volume of DIVERSA's NANOPARTICLES ³	Volume of PROTEIN-TAG ⁴
	1771 µg	40 μL	1 mL	500 μL
E00 kD •	886 µg	20 μL	500 μL	250 μL
500 kDa	531 µg	12 μL	300 µL	150 μL
	89 µg	2 μL	50 μL	25 μL
	886 µg	40 μL	1 mL	500 μL
250 kDa	443 µg	20 μL	500 μL	250 μL
250 KDa	266 µg	12 μL	300 µL	150 μL
	44 µg	2 μL	50 μL	25 μL
	354 μg	40 µL	1 mL	500 μL
100 kDa	177 μg	20 μL	500 μL	250 μL
TOU KDa	106 μg	12 μL	300 µL	150 μL
	18 µg	2 μL	50 μL	25 μL
	177 μg	40 μL	1 mL	500 μL
E0 I-D -	89 µg	20 μL	500 μL	250 μL
50 kDa	53 µg	12 μL	300 µL	150 μL
	9 µg	2 μL	50 μL	25 μL
	53 µg	40 μL	1 mL	500 μL
15 kDo	27 μg	20 μL	500 μL	250 μL
15 kDa	16 µg	12 μL	300 µL	150 μL
	3 µg	2 μL	50 μL	25 μL

¹ To be defined by end-users according to the experimental needs.

² Calculate according to EQUATION 1 and EQUATION 2.

³ Calculate according to **EQUATION** 3.

⁴ Calculate according to **EQUATION** 4.

FREQUENTLY ASKED QUESTIONS

QUESTION	ANSWER
What is the purpose of adding a tag to the protein?	The tag in the protein facilitates its association to DIVERSA 's nanoparticles by following easy and mild procedures that do not compromise its structure and activity.
Can I filter the formulation?	Yes, DIVERSA PROTEIN nanoparticles can be filtered using 0.22 µm PES membrane filters if needed.
How can I measure the size of the final formulation?	Diameter size can be measured using an equipment as Dynamic Light Scattering (DLS) analysis.
Can DIVERSA 's nanoparticles be used to increase the intracellular concentration of a specific protein replacing gene transfection experiments?	DIVERSA's nanoparticles can indeed lead to an increase in the intracellular content of the associated protein in much simple and easy way in relation to conventional transfection protocols. The nanoparticles can be added when the cell culture media is replaced, or at specific time points.
Can I use DIVERSA PROTEIN nanoparticles for <i>in vivo</i> studies?	Yes, DIVERSA PROTEIN nanoparticles can be used <i>in vivo</i> . DIVERSA provide customized reagents labeled with fluorophores such as Cy7.5, tailored to your experimental settings. For a customized and optimized prototype, contact DIVERSA .

Shipping temperature may differ from storage temperature. This does not alter the performance of the product.

DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain.

 $\label{thm:com} \mbox{Technical support: email: } \underline{\mbox{support@diversatechnologies.com}} \ \mid \ \underline{\mbox{www.diversatechnologies.com}} \ \mid \ \underline{\mbox{ww$

ONLINE RESOURCES

Visit our website <u>www.diversatechnologies.com</u> for further information.

Click <u>here</u> to watch the video of the **DIVERSA PROTEIN DELIVERY NANOPARTICLES**.

CHANGELOG

-	_	_	_	_	

Version	Date	Change Description
1.0	1 MAR 2022	Initial release of the protocol.
2.0	20 NOV 2024	Updated equations and examples for better clarity of volume calculations; improve readability.