DIVERSA ANIONIC PEPTIDE **DELIVERY NANOPARTICLES** Enhancing intracellular delivery of anionic peptides #### USER PROTOCOL - #DIV042 | ABOUT THE NANOPAL | RTICLES | 1 | |--------------------|--|-----| | OVERVIEW | | 1 | | COMPONENTS. | | 1 | | STORAGE | | 1 | | EQUIPMENT AN | D MATERIALS REQUIRED BUT NOT SUPPLIED |) 2 | | CONSIDERATIO | NS BEFORE STARTING | 2 | | DIVERSA ANIONIC PE | PTIDE DELIVERY NANOPARTICLES | 3 | | PROTOCOL | | 3 | | | TYUS STIGMURUS ANIONIC PEPTIDE (TanP) PROTOCOL | 5 | | OPTIMIZATION GUIDE | ELINES | 6 | | RECOMMENDATIONS | OF USE AND TECHNICAL NOTES | 7 | | FREQUENTLY ASKED | QUESTIONS | 9 | | ONLINE RESOURCES | | 9 | ### ABOUT THE NANOPARTICLES #### OVERVIEW **DIVERSA** is a biocompatible, biodegradable, and cell-friendly technology for enhancing intracellular delivery of anionic peptides, paving the way towards clinical translation. **DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES**, based on cationic lipids, is suitable for an efficient association of your anionic peptides (pH > pI) mainly due to electrostatic interactions. #### COMPONENTS - 1x DIV042 vial for reconstitution. - 1x DIVTECH vial for preparation of DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES. - 2x Tips for 1 mL micropipette. #### **STORAGE** Before formulating, store the vials at -20 °C. Once formulated, storage is recommended at 4 °C. # EQUIPMENT AND MATERIALS REQUIRED BUT NOT SUPPLIED - 1 mL micropipette. - Sterile standard microtubes. - MilliQ water or any other recommended buffer. - Ethanol (EtOH) 96%. - Anionic peptide of interest. #### CONSIDERATIONS BEFORE STARTING - The following protocol is directed for anionic peptides where the isoelectric point (pl) must be higher than the pH of the buffer. - The following protocol is optimized for the preparation of 1 mL of **DIVERSA DELIVERY NANOPARTICLES** (starting from one **DIV042** vial for reconstitution). - **DIVERSA** cannot guarantee the optimal characteristics of the final formulation if modifications in the protocol are introduced. - It is recommended to use DIVERSA DELIVERY NANOPARTICLES within 60 days. - DIVERSA DELIVERY NANOPARTICLES is compatible with supplemented cell culture media 37 °C: DMEM, RPMI. - Do NOT use any buffer solution containing Triton-X, SDS or Tween-20 for the preparation or manipulation of DIVERSA/DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES. - DO NOT freeze DIVERSA/DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES. - Do NOT heat up DIVERSA/DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES. - Do NOT centrifuge or vortex DIVERSA/DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES. Shipping temperature may differ from storage temperature. This does not alter the performance of the product. DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain. $\label{thm:com} \mbox{Technical support: email: } \underline{\mbox{info@diversatechnologies.com}} \ \mid \ \underline{\mbox{www.diversatechnologies.com}} \underline{\mbox{www.d$ # **DIVERSA** ANIONIC PEPTIDE DELIVERY NANOPARTICLES PROTOCOL - 1. Reconstitute the DIV042 vial with 100 μ L of EtOH. Pipette up and down gently for mixing the lipids trying to recover all of them from the wall of the vial and keep the suspension in the vial. - 2. Add 900 μ L of ultrapure water into the **DIVTECH** vial or, alternatively, a buffer solution suggested in <u>Table 1</u> (Recommendations of Use and Technical Notes). - **3.** Transfer the whole volume from **DIV042** vial to the **DIVTECH** vial using a micropipette and the 1 mL micropipette tip provided. <u>IMPORTANT</u>: Before adding the lipids from <u>DIV042</u> vial to <u>DIVTECH</u> vial, set the micropipette at the maximum volume to have dead air volume in the tip for mixing in a faster and vigorous way. Then, place the 1 mL micropipette tip into the buffer solution of <u>DIVTECH</u> vial, and pipette up and down for 30 seconds, avoiding any spillage. The **DIVERSA DELIVERY NANOPARTICLES** is now ready for the association of the anionic peptide. Alternatively, keep it at 4 °C and use it in the following 60 days. **4.** Add the **DIVERSA DELIVERY NANOPARTICLES** gently and dropwise into the anionic peptide solution and pipette up and down gently. Recommended volumes are provided in <u>Table 2</u>. **Note:** we recommend using peptide stock concentration at 4 mg/mL to increase the reproducibility. **5.** Incubate the mixture for 15 min at room temperature (RT). Agitation is not required. The **DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES** is now ready-to-use. Alternatively, keep it at 4 °C and use it in the following 2 days, or depending on the stability of your cationic peptide. Shipping temperature may differ from storage temperature. This does not alter the performance of the product. DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain. Technical support: email: info@diversatechnologies.com | www.diversatechnologies.com Figure 1. DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES protocol. # EXAMPLE OF *TITYUS STIGMURUS* ANIONIC PEPTIDE (Tanp) ASSOCIATION PROTOCOL - 1. Reconstitute the DIV042 vial with 100 μ L of EtOH. Pipette up and down gently for mixing the lipids trying to recover all of them from the vial wall and keep the suspension in the vial. - 2. Add 900 µL of ultrapure water into the DIVTECH vial. - **3.** Add the content of **DIV042** to the **DIVTECH** vial using a micropipette and the provide narrow 1 mL micropipette tip. <u>IMPORTANT</u>: Before adding the lipids from <u>DIV042</u> vial to <u>DIVTECH</u> vial, set the micropipette at the maximum volume to have dead air volume in the tip for mixing in a faster and vigorous way. Then, place the 1 mL micropipette tip into the buffer solution of <u>DIVTECH</u> vial, and pipette up and down for 30 seconds, avoiding any spillage. The **DIVERSA DELIVERY NANOPARTICLES** is now ready for the association of the TanP peptide. Alternatively, keep it at 4 °C and use it in the following 60 days. **4.** Add 20 μ L of the **DIVERSA DELIVERY NANOPARTICLES** dropwise into 5 μ L of TanP solution and pipette up and down gently. **Note:** we recommend using peptide stock concentration at 4 mg/mL to increase the reproducibility. 5. Incubate the mixture for 15 min at RT. The **DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES** is now ready-to-use. Alternatively, keep it at 4 °C and use it in the following 2 days. ### **OPTIMIZATION GUIDELINES** It is highly recommended to optimize your conditions to get the best DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES performance. Optimize one parameter at a time. The following parameters can be optimized: - Amount of DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES: Start fixing the concentration and amount of your anionic peptide to be delivered, and then you may vary the quantity of the DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES. - Amount of anionic peptide to be delivered: you may need to vary the amount of your anionic peptide to be delivered, as we recommended in Table 2 (Recommendations of Use and Technical Notes). Depending on the sensitivity of your assay, a greater amount of peptide and DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES may be required. For higher amounts of peptide, you can scale up the volume of DIVERSA DELIVERY NANOPARTICLES according to the amount of peptide. - Concentration of the peptide solution: We recommend peptide concentration at 4 mg/mL. At lower concentrations, we recommend concentrating your peptide using ultracentrifugation filters 0.5 mL- 10 kDa. If your protein is in powder, we recommend dissolve it at final concentration of 4 mg/mL in its corresponding buffer. - Cell type and density: you may need to optimize cell numbers. Delivery efficacy may be sensitive to the confluency of the cells in culture. - **Incubation times for** *in vitro* **assays**: you may vary incubation times, depending on the type of functional assay performed, shorter or longer incubation time may influence delivery efficiency. # RECOMMENDATIONS OF USE AND TECHNICAL NOTES Table 1. Suggested buffer solution for **DIVTECH** vial. | BUFFER SOLUTION | CONCENTRATION | | |-----------------|---------------|--| | Ultrapure water | N/A | | | NaCl | 150 mM | | | HEPES | 10-25 mM | | | DPBS | 1X | | **Table 2.** Suggested volumes for **DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES**. | DIVERSA DELIVERY
NANOPARTICLES | PEPTIDE solution | Amount of PEPTIDE* | |-----------------------------------|------------------|--------------------| | 50 μL | 5 μL | 20-50 μg | | 20 μL | 5 μL | 10-20 μg | | 10 μL | 5 μL | 1-10 µg | ^{*}For higher amounts of peptide, you can scale up the volume of **DIVERSA DELIVERY NANOPARTICLES** according to the amount of peptide (e.g., 200 μ L of formulation for up to 200 μ g of peptide, ideally in 5 μ L, however, this peptide solution volume can be increased for higher quantities). Table 3. Recommended volumes for cell culture. | Cell culture
vessel | Volume of DIVERSA | Volume of
medium | Final
volume/well | |------------------------|--------------------------|---------------------|----------------------| | 100 cm | 200 μL | 4,8 mL | 5 mL | | 6-well | 40 μL | 960 mL | 1 mL | | 12-well | 20 μL | 996 μL | 500 μL | | 24-well | 10 μL | 240 μL | 250 μL | | 96-well | 4 μL | 96 µL | 100 μL | ^{*}In 6-well plates, 2-3x105 cells must be seeded per well. Note: the cell density should be optimized for each cell model. ## FREQUENTLY ASKED QUESTIONS | QUESTION | ANSWER | |--|---| | Can I filter the formulation? | Yes, if necessary, DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES can be filtered using 0.22 µm filters of PES membrane. | | How can I measure the size of the final formulation? | Diameter size can be measured by Dynamic Light Scattering (DLS) analysis adding to the cuvette 10 µL of DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES with 990 µL of MilliQ water. | | Can I use DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES for research in vivo studies? | Yes, DIVERSA ANIONIC PEPTIDE NANOPARTICLE REGENT can be used for research <i>in vivo</i> studies. For specific recommendations and a customized and optimized prototype, contact DIVERSA . | | What if I need to work with higher peptide concentrations than the ones provided in Table 2? | You can concentrate on the formulation (see next question), or alternatively, contact <u>DIVERSA</u> for advice depending on your specific peptide. | | How do I concentrate on the formulation? | If necessary, the 1 mL of DIVERSA ANIONIC PEPTIDE DELIVERY NANOPARTICLES can be concentrated by using a SpeedVac or Rotavap in mild conditions (avoid surpassing 35 °C or drying the samples). Samples can be concentrated up to 4-fold its original volume (i.e., to a final volume 250 μ L). | ## **ONLINE RESOURCES** Visit our website <u>www.diversatechnologies.com</u> for further information. Shipping temperature may differ from storage temperature. This does not alter the performance of the product. DIVERSA TECHNOLOGIES S.L. | Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain. $\label{thm:commutation} \textbf{Technical support: email: } \underline{info@diversatechnologies.com} \hspace{0.1cm} \mid \hspace{0.1cm} \underline{www.diversatechnologies.com} \hspace{0.1cm}$