TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 1 of 72

Proximal Tubule Kidney-Chip Co-Culture Protocol

May 09, 2024

EP-228 Rev. D

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 2 of 72

Proximal Tubule Kidney-Chip Co-Culture Protocol

Overview

Introduction

This protocol described the general steps for using the Emulate Kidney-Chip S1 BioKit.

Contents

Topic	See Page
Part I. Emulate Kidney-Chip S1 BioKit	3
Part II. Experimental Overview	4
Part III. Equipment and Materials Required	6
Part IV. Workstation Preparation and Chip Handling	10
Techniques	10
Part V. Proximal Tubule Kidney Co-Culture Protocol	14
Part VII. Troubleshooting	64
Part VIII: Appendices	67

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 3 of 72

Part I. Emulate Kidney-Chip S1 BioKit

Overview

Introduction

This part provides an overview of the Emulate Kidney-Chip S1 BioKit as well as its key components, shipping information, and storage specifications.

Components

The Emulate Kidney-Chip S1 BioKit includes the pre-qualified primary human kidney cells listed in the table below.

Category	Channel Location	Type of Cells
Human Renal	Тор	Epithelial Cells
Proximal Tubule		
Epithelial Cells		
(hRPTECs)		
Human Glomerular	Bottom	Endothelial Cells
Microvascular		
Endothelial Cells		
(hGMVECs)		

Cell Shipping

Cells are shipped in cryogenic storage vacuum flasks.

Cell Storage

Always store cryopreserved cells in liquid nitrogen. Never store them in dry ice or an -80°C freezer. Chronic temperature fluctuations can cause severe damage to cell membranes and the cytoskeletal components.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 4 of 72

Part II. Experimental Overview

Overview

Introduction

This section gives an overview of the experimental workflow.

Day X: Reagent Preparation

Aliquot reagents (ECM, Matrigel, etc.)

Day -5: Thaw Cells

- Thaw human Glomerular Microvascular Endothelial Cells (hGMVECs)
- Thaw human Renal Proximal Tubule Epithelial Cells (hRPTECs)

Day -1: Chip Preparation

- Prepare chips
- Prepare ER-1 solution
- Introduce ER-1 solution to channels
- Activate chips
- Prepare ECM solution
- Coat chips with ECM

Day 0: Seeding hGMVECs and hRTPECs into Chips

- Prepare the necessary cell culture media
- Prepare chips
- Prepare hGMVECs for seeding
- Seed hGMVECs to the bottom channel
- Flip chips upside-down using Chip Cradle
- Allows cells to attach (2.5 h post-seeding)
- · Gravity wash bottom channels
- Seed hRPTECs to top channel
- Allow cells to attach (2.5 h post-seeding)
- · Gravity wash chips

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 5 of 72

Overview, Continued

Day 1: Chips to Pods, and Pods to Zoë

- Gas equilibrate media
- Prime Pods
- Wash Chips
- Chips to Pods
- Pods to Zoë

Day 2+:

- Maintenance and the Regulate Cycle
- Sampling and Media Replenishment

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 6 of 72

Part III. Equipment and Materials Required

Overview

Introduction

Ensure all equipment, materials, and reagents are accessible prior to each experiment. Below are the catalog numbers for the specific equipment, consumables, and materials needed.

Note on Catalog Numbers

Exact catalog numbers are provided for specific materials required for successful experiments.

Required Equipment and Consumables

A list of equipment and consumables needed for this protocol in addition to the Emulate Kidney-Chip S1 BioKit is provided below:

Equipment	Description	Supplier	Catalog Number
Emulate Kidney-	12- or 24-pack	Emulate	BIO-KH-CO12
Chip S1 BioKit			BIO-KH-CO24
Zoë-CM2® Culture	1 per 12 chips	Emulate	ZOE-CM2
Module			
Orb-HM1 [®] Hub	1 per 4 Zoës	Emulate	ORB-HM1
Module			
UV Light Box	1 per Zoë	Emulate	UVLamp
Chip Cradle	Autoclaved, 1 per 6	Emulate	CHIP-CRD
	chips		
Steriflip®-HV	Sterile, 0.45 µm PVDF	EMD	SE1M003M00
Filters	filter	Millipore	
Square Cell	Sterile, 1 per 6 chips	VWR	82051-068
Culture Dish (120			
x 120 mm)			
Collagen type-1	24-well, flat-bottom, TC-	Corning	356408
coated plates	treated		
Handheld vacuum	-	Corning	4930
aspirator			
Aspirating pipettes	2-mL, polystyrene,	Corning /	357558
	individually wrapped	Falcon	
Aspirating tips	Sterile (autoclaved)	-	-

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 7 of 72

Serological 2-mL, 5-mL, 10-mL, and -	
Serological 2-IIIE, 3-IIIE, 10-IIIE, and 1-	-
Pipettes 25-mL low-endotoxin,	
sterile	
Pipette P20, P200, and P1000 -	-
Pipette Tips P20, P200, and P1000 -	-
sterile, filter, low-	
adhesion	
Conical tubes 15-mL and 50-mL -	-
polypropylene, sterile	
Eppendorf Tubes® 15-mL, sterile -	-
Aluminum foil	-
Parafilm [®]	-
Microscope (with For bright-field imaging -	-
camera)	
Hemocytometer	-
Manual Counter	-
Water bath (or	-
beads)	
Vacuum set-up Minimum pressure: -	-
-70 kPa	
T75 flasks	-
Ice bucket	-
70% ethanol and For surface sterilization	
wipes	

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 8 of 72

Overview, Continued

Required Materials

A list of reagents, media, and supplements needed for this protocol in addition to the Emulate Kidney-Chip S1 BioKit provided below:

Reagent	Description	Supplier	Catalog Number
ER-1™ Reagent	5-mg powder	Emulate	ER105
ER-2™ Reagent	25-mL bottle	Emulate	ER225
Dulbecco's PBS	1X	Corning	21-031-CV
(DPBS -/-) (without			
Ca ²⁺ , Mg ²⁺)			
Trypan blue	0.4% solution	Sigma	93595
Trypsin-EDTA	0.05% Trypsin	Sigma	T3924
Solution			
REGM™ Renal	Epithelial Growth	Lonza	CC-3190
Epithelial Cell Growth	Medium &		
Medium BulletKit™	Supplements		
REBM™ Basal	Base Epithelial	Lonza	CC-3191
Medium	Grown Medium		(part of CC-3190)
REGM™	Supplements and	Lonza	CC-4127
SingleQuots™ (Kit)	Growth Factors		(part of CC-3190)
Normal Blood	Endothelial Medium	Cell Systems	4N3-500-R
Glucose Level	& Supplements		
Without Serum (Kit)			
Culture boost™	50X supplement	Cell Systems	4CB-500-R (part
			of 4N3-500-R)
Attachment Factor™	1X	Cell Systems	4Z0-210 (part of
			4N3-500-R)
Matrigel [®]	LDEV-free	Corning	354234
Collagen type IV	5 mg powder	Sigma	C5533
Penicillin-	10,000 U / mL; 10	Sigma	P4333
streptomycin	mg / mL		
Fetal bovine serum	Sterile, heat-	Sigma	F4135 or F8317
(FBS)	inactivated		

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 9 of 72

Overview, Continued

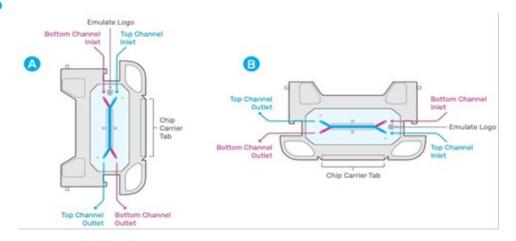
Notes for ER-1 and ER-2

- Upon arrival, store the ER-1 powder unopened in the metalized pouch at -20°C, protected from light and humidity.
- Upon arrival, store the ER-2 solution at 4°C.
- Both ER-1 and ER-2 reagents should be discarded if stored at room temperature for over 3 weeks, as this can compromise the performance of the reagents.
- If additional ER-1 and ER-2 are needed, they can be purchased separately from Emulate using the product information in the table above.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Pro	Date 05-09-2024	Page 10 of 72

Part IV. Workstation Preparation and Chip Handling Techniques

Workstation Preparation


Aseptic Techniques

- Always work with chips in a sterile environment, such as the biosafety cabinet (BSC).
- Before beginning the experiment, prepare, sanitize, and organize the work surface of the BSC. Arrange tips, media, and other necessary materials in the sterile field so they are easily within reach but not blocking the path of airflow.
- Use 70% ethanol to thoroughly sanitize all reagents and materials before placing them into the BSC.
- Always avoid touching the chip directly. Handle the chip carrier only by the sides, or by the tab, with gloves.
- Do not remove chips from the chip carrier until after the experiment.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 11 of 72

Chip Handling Techniques

Possible Chip Orientations

Orientation A	Orientation B
The bottom channel inlet will be on	The bottom channel inlet will be on the
the top left of the chip, while the top	top right of the chip, while the top channel
channel inlet will be on the top right	inlet will be on the bottom right of the
of the chip. Conversely, the bottom	chip. Conversely, the bottom channel
channel outlet will be on the bottom	outlet will be on the bottom left of the
right of the chip, while the top	chip, while the top channel outlet will be
channel outlet will be on the bottom	on the top left of the chip.
left of the chip.	

Pipetting

• While 50 μ L (top channel) and 20 μ L (bottom channel) are the standard volumes used throughout the protocol, there can be some flexibility in the actual volumes used:

Channel	Volume Range
Top Channel	35–50 µL
Bottom Channel	15–20 µL

These volumes allow for simple pipetting and a slight overfill to avoid bubbles or dry channels.

 \bullet All wash steps, unless otherwise stated, are performed using 200 μL of the specific wash solution.

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 12 of 72

Chip Handling Techniques, Continued

Channel and Membrane Dimensions

The specific channel and membrane dimensions are outlined below:

Top Channel Width x Height Dimensions Area 28.0 mm² Volume 28.041 μL Imaging distance from the bottom of the chip to the top of the membrane Bottom Channel Width x Height Dimensions Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region Area 28.0 mm² 850 μm Bottom of chip to top of membrane 1000 μm x 200 μm Area 40 μm (hexagonally packed) Thickness 50 μm		Ton C	hannal
Area 28.0 mm² Volume 28.041 μL Imaging distance from the bottom of the chip to the top of the membrane Bottom Channel Width x Height Dimensions 1000 μm x 200 μm Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm	Width x Height		
Volume 28.041 μL Imaging distance from the bottom of the chip to the top of the membrane Bottom Channel Width x Height Dimensions 1000 μm x 200 μm Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region			·
Imaging distance from the bottom of the chip to the top of the membrane Bottom Channel			
the chip to the top of the membrane Bottom Channel			,
Bottom Channel Width x Height Dimensions 1000 μm x 200 μm Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region	Imaging distan	ce from the bottom of	850 μm
Bottom Channel Width x Height Dimensions 1000 μm x 200 μm Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region	the chip to the	top of the membrane	
Width x Height Dimensions Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region			top of memorane
Area 24.5 mm² Volume 5.6 μL Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region	Width x Height		
Membrane Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region			·
Pore diameter 7.0 μm Pore spacing 40 μm (hexagonally packed) Thickness 50 μm Co-Culture Region	Volume		5.6 µL
Pore spacing 40 µm (hexagonally packed) Thickness 50 µm Co-Culture Region		Meml	brane
Thickness 50 µm Co-Culture Region	Pore diameter		7.0 µm
Co-Culture Region	Pore spacing 4		40 μm (hexagonally packed)
Area Co-Culture Region 17.1 mm ²	Thickness		,
Area 17.1 mm ²		Co-Cultur	re Region
1	Area		17.1 mm ²

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 13 of 72

Chip Handling Techniques, Continued

Pipetting Solution into Channels Follow the steps below for pipetting solution into the Organ-Chip when coating, washing, and seeding cells prior to attaching the chip to Zoë.

Note: Always introduce liquid to the endothelial channel before the epithelial channel.

Step	Action
4	Take a P200 pipette with a sterile pipette tip and collect the solution to
1	be added to the Organ-Chip.
2	Place the pipette tip perpendicular to the chip channel inlet, ensuring
2	that the tip is securely in the port.
3	Steadily dispense the liquid through the channel.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 14 of 72

Part V. Proximal Tubule Kidney Co-Culture Protocol

Protocol Overview

Introduction

This section lists the basic steps for using Proximal Tubule Kidney-Chips in experiments.

Timeline

Topic	See Page
Day X: Reagent Preparation	15
Day -5: Thaw hGMVECs and hRPTECs	16
Day -1: Chip Preparation	22
Day 0: Seeding hGMVECs and hRPTECs into Chips	32
Day 1: Chips to Pods, and Pods to Zoë	48
Day 2+: Chip Maintenance and Sampling	60

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 15 of 72

Day X: Reagent Preparation

Aliquot Reagents

Introduction

Aliquot reagents prior to use so the stock solutions do not undergo multiple freezethaw cycles.

Collagen-IV (ECM)

Reagent	Conc. [Stock]	Amount	Volume	Solvent
Collagen-IV	1 mg / mL	5 mg	5 mL	DPBS

- Resuspend 5 mg collagen-IV in 5 mL of DPBS according to manufacturer's instructions.
- Create single-use volume aliquots and store them at -20°C.

Matrigel

Aliquot reagents including media supplements and ECM prior to use and store appropriately to avoid multiple freeze-thaw cycles.

Reagent	Conc. [Stock]	Conc. [Final]
Matrigel [®]	Varies per lot	100 μg / mL

The Matrigel bottle must be thawed overnight on ice either in the back of the 2–6°C refrigerator or in a cold room. Add water to ensure the ice is slushy, as the solution gels rapidly at temperatures above 10°C. Before aliquoting, use pipettes, tips, and tubes prechilled to -20°C.

- After the Matrigel is thawed, aliquot Matrigel to 100 µL aliquots (the specific concentration of the Matrigel solution (varies per lot) on each vial for reference when coating chips. The Matrigel concentration can be found on the product quality certificate).
- Aliquoting volumes of Matrigel smaller than 100 μL is not recommended due to the low accuracy associated within pipetting viscous solutions.
- Store aliquots at -20°C.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 16 of 72

Day -5: Thaw hGMVECs and hRPTECs

Overview

Goals

• Thaw and expand hGMVECs and hRPTECs in flasks prior to seeding in chips.

Required Materials

- Complete hGMVEC culture medium (at 37°C)
- Complete hRPTEC culture medium (at 37°C)
- 15 mL conical tube
- Attachment Factor™
- T-75 flask
- Serological pipettes
- Pipettes and tips
- Aspirator
- Centrifuge
- 70% ethanol

Key Steps

Topic	See Page
Prepare hGMVEC Culture Media and Flask	17
Thaw and Plate hGMVECs	18
Prepare hRPTEC Culture Media and Flask	19
Thaw and Plate hRPTECs	21

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 17 of 72

Prepare hGMVEC Culture Media and Flask

hGMVEC Culture Media

Base hGMVEC Culture Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Normal Blood	485 mL	-	-	Cell Systems	4N3-500-R
Glucose Level					
Without Serum					
Culture-boost-R	10 mL	-	2%	Cell Systems	4CB-500-R
Pen / strep	5 mL	-	1%	Sigma	P4333

- Store the Base hGMVEC Culture Media at 4°C.
- Use the Base hGMVEC Culture Media within 30 days of preparation.

Complete hGMVEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hGMVEC	45 mL	-	-	Recipe Above	-
Culture Medium					
FBS	5 mL	-	10%	Sigma	F4135

- Store the Complete hGMVEC Culture Medium at 4°C.
- Use the Complete hGMVEC Culture Medium within 7 days of preparation.

Prepare Flask

Step	Action
	Warm a sufficient amount of Complete hGMVEC Culture Medium and
1	Attachment Factor™ to 37°C. 15 mL of media and 5 mL of
	attachment factor are needed (see Step 3).
	Label the culture flask with the relevant information (e.g., cell type,
2	passage number, date, initials).
2	Pipette Attachment Factor onto the growth surface of the flask until it
3	is fully covered. 5 mL of Attachment Factor is used for each T75 flask.
	Place the prepared flask into the 37°C incubator for at least 10
4	seconds to coat the surface. Maintain this temperature until the cells
	are plated.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 18 of 72

Thaw and Plate hGMVECs

Thawing and Maintaining Cells

Immerse the vial(s) of cells in a 37°C water bath without submerging the cap. Closely observe and gently agitate the vials. Remove them from the water bath just before the last of the ice disappears. 2 Spray the vial(s) with 70% ethanol and wipe them dry before placing them into the BSC. 3 Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube containing 3 mL of warm Complete hGMVEC Culture Medium. 4 Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. 5 Bring the volume to 15 mL with Complete hGMVEC Culture Medium. 6 Centrifuge 200 x g for 5 minutes at room temperature. 7 Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. 8 Loosen the cell pellet by gently flicking the tube. 9 Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. 10 Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. 11 Add the hGMVEC suspension to the freshly coated T75 flask. 12 Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and again on Day 2 the seeding takes place on Day 0 no further changes are needed.	Step	Action
Spray the vial(s) with 70% ethanol and wipe them dry before placing them into the BSC. Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube containing 3 mL of warm Complete hGMVEC Culture Medium. Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and		Immerse the vial(s) of cells in a 37°C water bath without submerging the cap. Closely
Spray the vial(s) with 70% ethanol and wipe them dry before placing them into the BSC. Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube containing 3 mL of warm Complete hGMVEC Culture Medium. Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	1	observe and gently agitate the vials. Remove them from the water bath just before the
BSC. Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube containing 3 mL of warm Complete hGMVEC Culture Medium. Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 µL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and		last of the ice disappears.
BSC. Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube containing 3 mL of warm Complete hGMVEC Culture Medium. Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	2	Spray the vial(s) with 70% ethanol and wipe them dry before placing them into the
containing 3 mL of warm Complete hGMVEC Culture Medium. Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and		BSC.
containing 3 mL of warm Complete hGMVEC Culture Medium. Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the runoff in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 µL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	3	Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube
off in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and		containing 3 mL of warm Complete hGMVEC Culture Medium.
off in the 15-mL tube. Bring the volume to 15 mL with Complete hGMVEC Culture Medium. Centrifuge 200 x g for 5 minutes at room temperature. Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	4	Rinse the vial(s) with 1 mL of Complete hGMVEC Culture Medium and collect the run-
6 Centrifuge 200 x g for 5 minutes at room temperature. 7 Aspirate and discard the supernatant, leaving approximately 100 μL of medium covering the cell pellet. 8 Loosen the cell pellet by gently flicking the tube. 9 Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. 10 Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. 11 Add the hGMVEC suspension to the freshly coated T75 flask. 12 Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	4	off in the 15-mL tube.
Aspirate and discard the supernatant, leaving approximately 100 µL of medium covering the cell pellet. 8 Loosen the cell pellet by gently flicking the tube. 9 Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. 11 Add the hGMVEC suspension to the freshly coated T75 flask. 12 Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	5	Bring the volume to 15 mL with Complete hGMVEC Culture Medium.
covering the cell pellet. Loosen the cell pellet by gently flicking the tube. Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	6	Centrifuge 200 x g for 5 minutes at room temperature.
covering the cell pellet. 8 Loosen the cell pellet by gently flicking the tube. 9 Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. 10 Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. 11 Add the hGMVEC suspension to the freshly coated T75 flask. 12 Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	7	Aspirate and discard the supernatant, leaving approximately 100 µL of medium
9 Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium. 10 Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. 11 Add the hGMVEC suspension to the freshly coated T75 flask. 12 Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	,	covering the cell pellet.
Aspirate and discard excess Attachment Factor from the T75 flask that was prepared. Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	8	Loosen the cell pellet by gently flicking the tube.
Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	9	Re-suspend cells in 15 mL of Complete hGMVEC Culture Medium.
Note: It is unnecessary to rinse or dry the flask prior to adding cells. Add the hGMVEC suspension to the freshly coated T75 flask. Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	10	Aspirate and discard excess Attachment Factor from the T75 flask that was prepared.
12 Incubate overnight at 37°C and 5% CO ₂ . Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	10	Note: It is unnecessary to rinse or dry the flask prior to adding cells.
Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and	11	Add the hGMVEC suspension to the freshly coated T75 flask.
1 13	12	Incubate overnight at 37°C and 5% CO ₂ .
again on Day -2. If seeding takes place on Day 0, no further changes are needed	13	Exchange the Complete hGMVEC Culture Medium the following day (Day -4) and
again on Day -2. If seeding takes place on Day 0, no further changes are needed.	13	again on Day -2. If seeding takes place on Day 0, no further changes are needed.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 19 of 72

Prepare hRPTEC Culture Media and Flask

hRPTEC Culture Media

Base hRPTEC Culture Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No
REBM™ Renal Epithelial	492 mL	-	-	Lonza	CC-3191
Cell Growth Basal					
Medium					
REGM™ SingleQuots™				Lonza	CC-4127
Kit containing:					
Human Epidermal	0.5 mL	-	-	-	-
Growth Factor (hEGF)					
• Insulin	0.5 mL	-	-	-	-
Hydrocortisone	0.5 mL	-	-	-	-
Transferin	0.5 mL	-	-	-	-
Triiodothyronine	0.5 mL	-	-	-	-
Epinephrine	0.5 mL	-	-	-	-
Pen / Strep	5 mL	-	1%	Sigma	P4333

- Store Base hRPTEC Culture Media at 4°C.
- Use Base hRPTEC Culture Media within 30 days of preparation.

Note: Due to its nephrotoxic nature, gentamicin sulfate from the REGM™ SingleQuots™ Supplement Pack should not be used. If only one bottle of REBM™ Renal Epithelial Cell Growth Basal Medium will be used, omit the hEGF from the base hRPTEC Culture Medium and add it accordingly to prepare the Complete hRPTEC Culture Media. This is because, on day 1, the hEGF will need to be diluted to one-tenth of its original concentration in order to prepare the Complete hRPTEC Maintenance Medium.

Complete hRPTEC Culture Media (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hRPTEC	49.75 mL	-	-	Recipe Above	-
Culture Medium					
FBS	0.25 mL	-	0.5%	Lonza (from	CC-4217
				kit above)	

Store Complete hRPTEC Culture Media at 4°C

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 20 of 72

 Use Complete hRPTEC Culture Media within 7 days of preparation. 	

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 21 of 72

Prepare hRPTEC Culture Media and Flask, Continued

Prepare Flask

Step	Action
1	Warm 15 mL of Complete hRPTEC Culture Medium to 37°C.
2	Label the culture flask with the relevant information and place it into
	the 37°C incubator to pre-warm the T75 flask.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 22 of 72

Thaw and Plate hRPTECs

Thawing and Maintaining Cells

Step	Action
	Thaw the frozen vial(s) of cells by immersing in a 37°C water bath, without submerging
1	the cap. Closely observe while gently agitating and remove from the water bath just
	before the last of the ice disappears.
	Once only a small ice pellet remains, immediately remove the vial(s) from the water
2	bath, wipe them dry, spray the vial(s) with 70% ethanol, wipe them dry again, and
	place them into the BSC.
3	Immediately transfer the contents of the vial(s) into a sterile 15-mL conical tube
3	containing 3 mL of warm Complete hRPTEC Culture Medium.
4	Rise the vial with 1 mL of warm Complete hRPTEC Culture Medium and collect the
4	run-off in a 15-mL tube.
	Bring the volume to 15 mL with warm Complete hRPTEC Culture Medium— Do Not
5	Centrifuge.
6	Add the hRPTEC suspension to the pre-warmed T75 flask.
7	Incubate overnight at 37°C and 5% CO ₂ .
0	Exchange the Complete hRPTEC Culture Medium the following day (Day -4) and
8	again on Day -2. If seeding takes place on Day 0, no further changes are needed.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 23 of 72

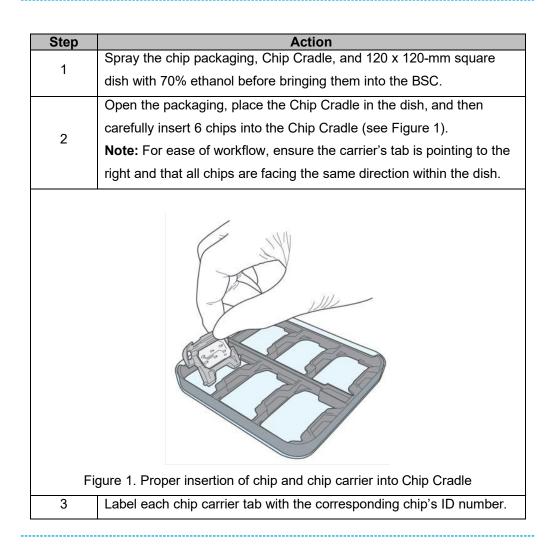
Day -1: Chip Preparation

Overview

Goals

- Activate the inner surface of the chip channels for proper ECM attachment
- Coat the inner channels with a mixture of collagen IV and Matrigel ECM proteins for cell attachment

Required Materials


- Chip-S1 Stretchable Chips (12 per Zoë)
- ER-1 reagent
- ER-2 buffer
- 15 mL conical tubes
- DPBS (-/-) at room temperature
- DPBS (-/-) aliquot at 4°C
- Collagen IV (aliquot at 4°C on ice)
- Matrigel (aliquot at 4°C on slushy ice)
- 70% ethanol
- 120 x 120-mm square cell culture dish
- Ice and ice bucket
- Pipettes and filtered tips
- Aspirator and sterile tips
- Aluminum foil
- UV light box
- · UV safety glasses

Key Steps

Step	See Page
Prepare Chips	23
Prepare ER-1 Reagent	24
Introduce ER-1 Solution to Channels	25
Activate and Wash Chips	27
Prepare ECM Solution	28
Coat Chips with ECM	30

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 24 of 72

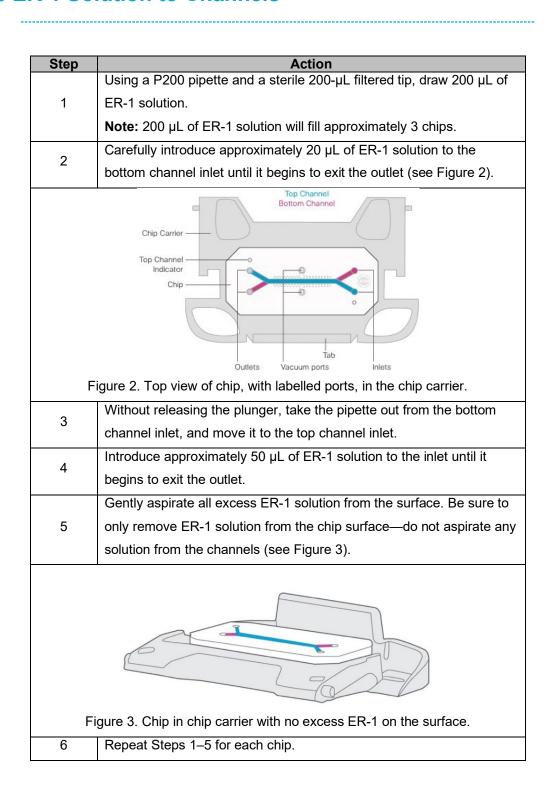
Prepare Chips

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 25 of 72

Prepare ER-1 Reagent

CAUTION

ER-1 is light sensitive. Prepare ER-1 solution immediately before use and discard any remaining ER-1 solution 1 hour after reconstitution. Using ER-1 solution that has been exposed to light or that has not been freshly prepared will lead to chip failure.


Before You Begin

- For complete activation, prepare ER-1 immediately before use, and discard any remaining solution 1 hour after reconstitution.
- **Note:** ER-1 is an eye irritant and must always be handled in the BSC with proper gloves and eye protection.

Step	Action		
1	Turn off the light in the BSC and allow the ER-1 and ER-2 to reach room		
'	temperature before use (approximately 10–15 minutes).		
2	Wrap an empty, sterile, 15-mL conical tube with foil to protect it from light.		
3	In the BSC, remove the small vial of ER-1 powder from the packet. Tap		
3	the vial to concentrate the powder at the bottom.		
4	Add 1 mL of ER-2 to the vial and transfer the contents directly to the		
4	bottom of the 15-mL conical tube. Do not pipette to mix.		
	Add 1 mL of ER-2 to the ER-1 vial to collect any remaining material and		
5	transfer the solution directly to the 15-mL conical tube.		
3	Note: The color of the transferred ER-1 solution will become lighter each		
	time the bottle is washed.		
6	Repeat Step 5 two more times, adding another 1 mL of ER-2 each time.		
	On the last ER-2 addition, cap and invert the bottle to collect any		
7	remaining ER-1 powder in the lid. Transfer the collected solution to the		
,	conical tube, bringing the total volume in the tube to 4 mL of ER-1		
	solution.		
	Add 6 mL of ER-2 solution to the 4 mL of ER-1 solution in the 15 mL		
8	conical tube for a final volume of 10 mL (working concentration of 0.5 mg		
0	/ mL). Gently pipette the solution to mix it without creating bubbles. The		
	ER-1 should be fully dissolved within the ER-2 solution prior to use.		

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 26 of 72

Introduce ER-1 Solution to Channels

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 27 of 72

	Inspect the channels for bubbles prior to UV activation. Dislodge any
7	bubbles by washing the channel with ER-1 solution. If bubbles persist,
	aspirate the channel dry and slowly re-introduce the ER-1 solution.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 28 of 72

Activate and Wash Chips

Step	Action	
1	Bring the Square Cell Culture Dish (120 x 120 mm)	
'	containing the ER-1-coated chips to the UV light box.	
2	Remove the cover from the dish. Place the open dish into the UV light	
2	box.	
3	Set the switch at the back of the UV light box to "Constant." Turn on	
	the power and press the "On" button to begin UV activation.	
4	Allow the chips to activate under UV light for 15 minutes.	
While the chips are being treated, prepare the ECM solution. (For		
5	more information, refer to the next section, "Prepare ECM Solution.")	
6	After UV treatment, bring chips back to the BSC.	
	Note: The BSC light may be on from this point forward.	
7	7 Fully aspirate the ER-1 solution from both channels.	
8	Wash each channel with 200 μL of ER-2.	
9	Fully aspirate the ER-2 from the channels.	
10	Wash each channel with 200 µL of sterile cold DPBS. Aspirate excess	
10	DPBS from the surface.	
11	Leave cold DPBS inside the channels.	

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 29 of 72

Prepare ECM Solution

Before Beginning

Prepare fresh ECM before each use by combining the individual ECM components with cold DPBS to reach the final working concentrations. The ECM solution will coat both channels.

Needed Volumes

For human Kidney-Chips, the ECM working concentrations are:

Reagent	Concentration
Collagen-IV	50 μg / mL
Matrigel	100 μg / mL

Steps

Step	Action
1	Bring a full ice bucket to the BSC.
2	Thaw one aliquot of Collagen IV (1 mg / mL) on slushy ice. Always maintain each ECM component and mixture on ice.
3	 Calculate the volume of ECM solution needed to coat all chips. Volume required per chip: ~100 μL For every batch of 12 chips, prepare 1.5 mL of ECM solution: 12 chips x 100 μL / chip = 1.2 mL of ECM solution. 1.2 mL + extra 300 μL = 1.5 mL of ECM solution.
4	Combine the components to prepare the ECM working solution.
5	Keep the ECM solution on ice until it is used.

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 30 of 72

Prepare ECM Solution, Continued

Example ECM Calculation

Example ECM ECM Calculation Example:

Solution	Concentration
Collagen IV stock concentration	1 mg / mL (C ₁)
Collagen IV final concentration	0.05 mg / mL (C ₂)
Matrigel stock concentration	10 mg / mL (C ₁)
Matrigel final concentration	0.1 mg / mL (C ₂)
Stock Volume	Collagen IV (X) or Matrigel (Y) (V ₁)
Final volume of ECM solution	1.5 mL (V ₂)

Collagen IV Calculation:

 $(1 \text{ mg / mL}) \times (X \text{ mL}) = (0.05 \text{ mg / mL}) \times (1.5 \text{ mL})$

 $X = 75 \mu L$ of collagen IV stock solution

Matrigel Calculation:

 $(10 \text{ mg / mL}) \times (Y \text{ mL}) = (0.1 \text{ mg / mL}) \times (1.5 \text{ mL})$

 $Y = 15 \mu L$ of Matrigel stock solution

DPBS Calculation

Volume DPBS =

(total volume of ECM needed) – (volume of collagen IV) – (volume of Matrigel)

 $= 1500 \mu L - 75 \mu L - 15 \mu L$

= 1410 μ L of DPBS

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 31 of 72

Coat Chips with ECM

Cton	Action		
Step 1	Action Fully aspirate the cold DPBS from both channels.		
•	Using a P200 pipette, draw 100 µL of ECM solution. (Each chip will		
2			
	use 100 μL)		
3	Carefully introduce ECM solution through the bottom channel inlet		
	until a small droplet forms on the outlet.		
4	Without releasing the plunger, move the pipette containing the		
7	remaining ECM solution to the top channel inlet.		
	Introduce ECM solution through the inlet, leaving small droplets of		
5	excess ECM solution on both ports in both channels (see Figure 4).		
	Figure 4. Chip in chip carrier with small ECM droplets at ports.		
	If bubbles are present, wash them from the channel with the ECM		
6	solution.		
7	Repeat steps 1–6 for each chip.		
	To prevent evaporation during incubation, fill the central reservoir with		
8	0.75-1 mL of DPBS (see Figure 5). Place the lid onto the dish and		
	incubate overnight at 37°C.		
Figure 5. Pipette filling central reservoir of Chip Cradle with DPBS.			

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 32 of 72

For best results, incubate the chips at 4°C overnight, then at 37°C for at least 1 hour the following day prior to cell seeding.

Note: Chips can be stored at 4°C for up to 2 days if kept moist.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 33 of 72

Day 0: Seeding hGMVECs and hRPTECs into Chips

Overview

Goals

• Harvest hGMVECs and hRPTECs from flasks and seed them into the chips.

Required Materials

- Complete hGMVECs Culture Medium (at 37°C)
- Complete hRPTECs Culture Medium (at 37°C)
- 1X DPBS (at room temperature)
- Serological pipettes
- Pipettes and filtered tips
- Aspirator and sterile tips
- 50 mL conical tubes
- Trypan Blue Cell Counting Solution
- Hemocytometer
- 70% ethanol
- Microscope
- Trypsin-EDTA

Key Steps

Topic	See Page
Prepare Complete hGMVEC and hRPTEC Culture Medium	33
Prepare Chips	34
Harvest hGMVECs	35
Cell Counting and Viability Assessment	37
Seed hGMVECs to the Bottom Channel	38
Seed a Well Plate	40
Harvest hRPTECs	41
Seed hRPTECs to the Top Channel	43
Seed a Well Plate	45
Gravity Wash	46

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 34 of 72

Prepare Complete hGMVEC and hRPTEC Culture Medium

Complete hGMVEC and hRPTEC Culture Medium

Complete hGMVEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hGMVEC	45 mL	-	-	Recipe	-
Culture Medium					
FBS	5 mL	-	10%	Sigma	F4135

- Store the Complete hGMVEC Culture Medium at 4°C.
- Use the Complete hGMVEC Culture Medium within one week of preparation.

Complete hRPTEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hRPTEC	49.75 mL	-	-	Recipe	-
Culture Medium					
FBS	0.25 mL	-	0.5%	Sigma	F4135

- Store the Complete hRPTEC Culture Medium at 4°C.
- Use the Complete hRPTEC Culture Medium within one week of preparation.

.....

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 35 of 72

Prepare Chips

Step	Action
1	Transfer the ECM-coated chips from the incubator into the BSC.
2	Fully aspirate the ECM from both channels.
3	Pipette 200 µL of warm Complete hGMVEC Culture Medium to the bottom and top channels of each chip. Wash the channel by aspirating the outflow, leaving media in the channel.
4	
5	Cover the Square Cell Culture Dish (120 x 120 mm) and place the chips into the incubator until the cells are ready for seeding.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 36 of 72

Harvest hGMVECs

Before You Begin

- hGMVECs in culture must be harvested and counted for bottom channel seeding.
 hGMVECs are adjusted to a density of 3.0 x 10⁶ cells / mL prior to seeding the bottom channel.
- If the hGMVECs are not as proliferative as expected, the concentration can be increased up to 4 x 10⁶ cells / mL to achieve a confluent monolayer within the channel.

Step	Action		
1	Bring the culture flask containing hGMVECs	from the incubator into	
'	the BSC.		
2	Aspirate culture media and add 15 mL of 1X DPBS to wash the culture surface. Aspirate the DPBS wash.		
3	Add 3 mL of trypsin-EDTA to the flask. Incut	oate for 2 to 3	
3	minutes at 37°C.		
	Tap the side of the flask gently and inspect t	he culture under	
4	the microscope to assess complete detachm	nent of cells from	
	the culture surface.		
	Add 9 mL of warm Complete hGMVEC Cultu	ure Medium to the	
5	flask and pipette gently to mix while collecting all cells from the		
	culture surface.		
6	Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube.		
6			
7	Add 3 mL of warm Complete hGMVEC Culture Medium to		
'	bring the total volume of the tube to 15 mL.		
8	Centrifuge hGMVECs at 200 x g for 5 minutes at room		
0	temperature.		
	While the cells are in the centrifuge, prepare Trypan Blue Cell		
	Counting Solution in a 1.5 mL tube:		
9	Trypan Blue Cell Counting Solution (45 μL)		
	Reagent Complete hGMVEC Culture Medium	Volume 40 μL	
		·	
	Trypan Blue	5 μL	

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 37 of 72

	Aspirate the supernatant, leaving approximately 100 μL of
10	medium above the cell pellet.
	Note: Aspirate carefully, as the cell pellet will be very small.
11	Gently flick the tube to loosen the cell pellet.
12	Using a P1000 pipette, gently resuspend the cells by adding
12	400 μL of warm Complete hGMVEC Culture Medium.
	Pipette gently to create a homogeneous mixture and transfer 5
13	μL of the cell suspension to the Trypan Blue Cell Counting
	Solution. (This will make a 1:10 dilution).

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 38 of 72

Cell Counting and Viability Assessment

Cell Counting and Viability Assessment

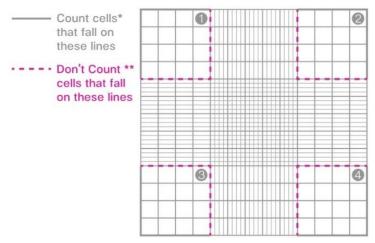


Figure 6. Example hemocytometer and cell counting.

1. Count both viable and non-viable cells in each quadrant of the hemocytometer (see Figure 6).

Live Cell Count, Dead Cell Count, Total Cell Count.

2. Calculate the percentage viability of the cell solution.

Live Cells ÷ Total Cells x 100 = % Viability

3. Calculate the viable cell concentration. The dilution factor is 10 when prepared in the Trypan Blue Cell Counting Solution above.

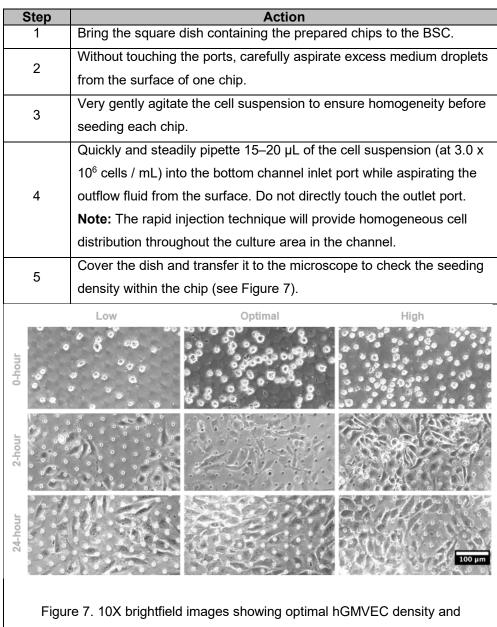
(Live Cell Count x 10 x 10^4) ÷ 4 = Viable Cell Concentration (cells / mL)

4. Calculate the viable cell yield.

Viable Cell Concentration ÷ Cell Suspension Volume = Viable Cell Yield (cells)

5. Viable Cell Yield ÷ Desired Density = Reconstitution Volume

Diluting hGMVECs


After calculating the Viable Cell Yield, dilute the hGMVECs with warm Complete hGMVEC Culture Medium to the required final cell density of 3.0 x 10⁶ cells / mL.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 39 of 72

Seed hGMVECs to the Bottom Channel

Before You Begin

Work with one chip at a time. After seeding the first chip, use a microscope to assess the cell density within the channel. Adjust the density of the cell suspension as necessary for the rest of the chips.

attachment.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 40 of 72

	Step	Action	
	1	Return the chips to the BSC	
	2	Using a P200 pipette, aspirate the hGMVECs through the outlet port. Then, dispose of the pipette.	
6	3	Wash the channel with 200 μL of fresh medium twice.	
		Aspirate the outflow.	
	4	Repeat steps 3–5 until the correct density is achieved	
	4	within the channel.	
	After con	firming the correct cell density, seed cells in the remaining	
	chips. Th	en, cover the 120 x 120-mm square dish and flip the dish	
	(see Figu	re 8). Add 0.75 mL DPBS to the reservoir on the chip cradl	
7	(see Figure 5).		
	Note: Mir	nimize the amount of time the cells are outside the incubato	
	by seedin	by seeding batches of no more than 12 chips at a time and by	
immediately placing the batches into the incubator at 37°C.			

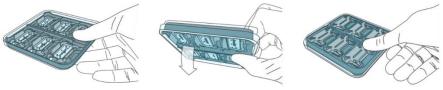


Figure 8. Inverting chips during endothelial seeding for cell attachment to the ECM-coated membrane.

8	Place the chips (with the DPBS reservoir) at 37°C for 2.5 hours.
	Once hGMVECs have attached (approximately 2.5 hours post-
9	seeding), aspirate DPBS from reservoir, and flip the dish back so that
	chips are in the upright position.
	With a P200 pipette, gently wash the bottom channel with 200 μL of
10	Complete hGMVEC Culture Medium and the top channel with 200 µL
10	of Complete hRPTEC Culture Medium. Return the chips to the
	incubator until ready to seed the hRPTECs in the top channel.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 41 of 72

Seed a Well Plate

Before You Begin

It is recommended to always seed any remaining hGMVECs into a conventional well-plate as a control for cell quality. If desired, transwells can be used as controls.

Step	Action
	Once the chips have been seeded, dilute the remaining hGMVECs to
1	a final cell density of 1.6 X 10 ⁵ cells / mL in Complete hGMVEC
	Culture Medium.
2	Add 500 µL of cell suspension to each well of a 24-well plate.
	In the 37°C incubator, disperse the cells evenly across the bottom of
3	the culture wells by moving the plate in a figure-eight motion across
	the shelf at least three times while keeping it flat on the surface of the
	incubator.
	Finally, move the plate in a crisscross pattern at least three times to
4	evenly disperse the cells. Once the cells are dispersed, do not disturb
	the plate until the next day to allow for cells to fully attach.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 42 of 72

Harvest hRPTECs

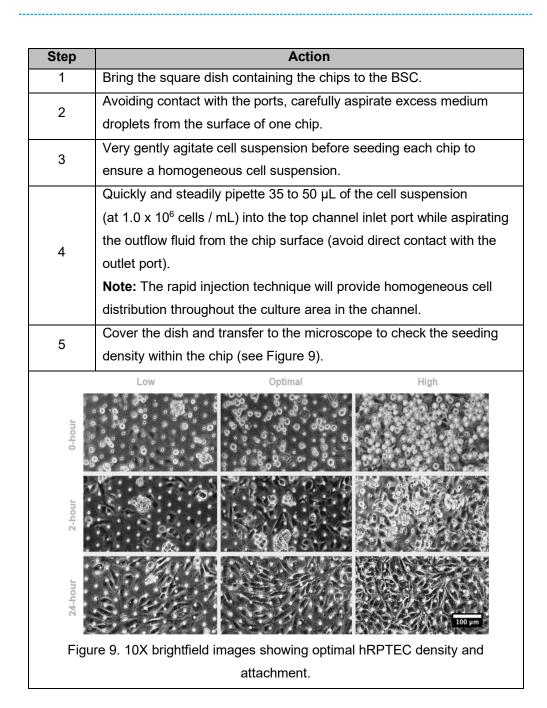
Before You Begin

Work with one chip at a time. After seeding the first chip, use a microscope to assess the cell density within the channel. Adjust the density of the cell suspension as necessary for the rest of the chips.

the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperature.			
the BSC. Aspirate the culture media and add 15 mL of 1X DPBS to wash culture surface. Aspirate the DPBS wash. Add 3 mL of trypsin-EDTA to the flask. Incubate for 2 to 3 minute at 37°C. Tap the side of the flask gently and inspect the culture under the microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
Aspirate the culture media and add 15 mL of 1X DPBS to wash culture surface. Aspirate the DPBS wash. Add 3 mL of trypsin-EDTA to the flask. Incubate for 2 to 3 minute at 37°C. Tap the side of the flask gently and inspect the culture under the microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flast and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate.	the		
culture surface. Aspirate the DPBS wash. Add 3 mL of trypsin-EDTA to the flask. Incubate for 2 to 3 minute at 37°C. Tap the side of the flask gently and inspect the culture under the microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate	uie		
Add 3 mL of trypsin-EDTA to the flask. Incubate for 2 to 3 minute at 37°C. Tap the side of the flask gently and inspect the culture under the microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
at 37°C. Tap the side of the flask gently and inspect the culture under the microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
Tap the side of the flask gently and inspect the culture under the microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate	es		
4 microscope to assess complete detachment of cells from the culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. 8 Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
culture surface. Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
Add 9 mL of warm Complete hRPTEC Culture Medium to the flat and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
and pipette gently to mix while collecting all cells from the culture surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
surface. Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate	sk		
Transfer the contents of the flask (12 mL) into a sterile 15-mL conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate	9		
conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate			
conical tube. Add 3 mL of warm Complete hRPTEC Culture Medium, bringing the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate	Transfer the contents of the flask (12 mL) into a sterile 15-mL		
the total volume of the tube to 15 mL. Centrifuge hRPTECs at 200 x g for 5 minutes at room temperature.			
the total volume of the tube to 15 mL. 8 Centrifuge hRPTECs at 200 x g for 5 minutes at room temperate	Add 3 mL of warm Complete hRPTEC Culture Medium, bringing		
NA 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Centrifuge hRPTECs at 200 x g for 5 minutes at room temperature.		
While the cells are in the centrifuge, prepare Trypan Blue Cell	While the cells are in the centrifuge, prepare Trypan Blue Cell		
Counting Solution in a 1.5 mL tube:			
9 Reagent Volume			
Complete hRPTEC Culture 40 μL			
Medium			
Trypan Blue 5 μL			
Carefully aspirate the supernatant, leaving approximately 100 µl	of		
10 medium above the cell pellet.			
Note: The cell pellet will be very small, so aspirate carefully.	Note: The cell pellet will be very small, so aspirate carefully.		
11 Loosen the cell pellet by flicking the tube gently.	Loosen the cell pellet by flicking the tube gently.		

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 43 of 72

12	Using a P1000 pipette, gently resuspend the cells by adding 400
12	μL of warm Complete hRPTEC Culture Medium.
	Pipette gently to create a homogenous cell mixture and transfer 5
13	μL of the cell suspension to the Trypan Blue Cell Counting
	Solution. This will make a 1:10 dilution.
14	Mix the counting solution thoroughly and count the cells using a
14	hemocytometer (See "Cell Counting and Viability Assessment").



TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 44 of 72

Seed hRPTECs to the Top Channel

Before You Begin

Work with one chip at a time. After seeding the first chip, use a microscope to assess the cell density within the channel. Adjust the density of the cell suspension as necessary for the rest of the chips.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 45 of 72

	If seeding density is not optimal, follow these steps:		
	Step	Action	
	1	Return the chips to the BSC	
6		Using a P200 pipette, extract the hRPTECs through the	
2		outlet port. Then, dispose of it.	
	3	Wash the channel with 200 µL of fresh medium twice.	
	3	Aspirate the outflow.	
7	After confirming the correct cell density, seed cells in the remaining		
7	chips.		
0	Add 0.75 mL of DPBS into the chip cradle reservoir and replace the		
6	8 lid of the square dish.		
9	Place the dish holding the chips at 37°C for 2.5 hours.		

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 46 of 72

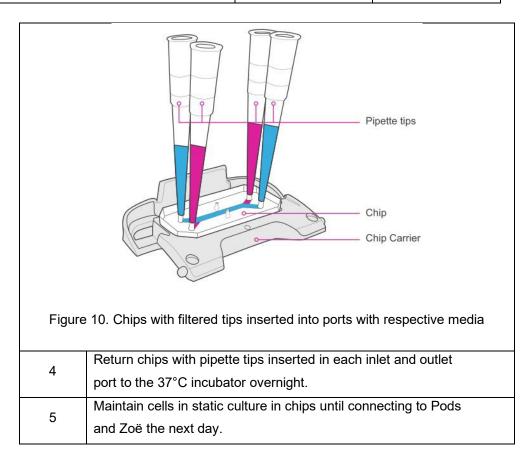
Seed a Well Plate

Before You Begin

It is recommended to always seed any remaining hRPTECs into a plate as a control for cell quality. If desired, transwells can be used as controls.

Step	Action
1	Once the chips have been seeded, dilute the remaining hRPTECs to
1	a final cell density of 1.6 X 10 ⁵ cells / mL in complete culture medium.
2	Add 500 µL of cell suspension to each well of a 24-well plate.
	In the 37°C incubator, disperse the cells evenly across the bottom of
3	the culture wells by moving the plate in a figure-eight motion across
	the shelf at least three times while keeping it flat on the surface of the
	incubator.
	Finally, move the plate in a crisscross pattern at least three times to
4	evenly disperse the cells. Once the cells are dispersed, do not disturb
	the plate until the next day to allow for cells to fully attach.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 47 of 72


Gravity Wash

Before You Begin

- A gentle gravity wash is performed after cells have fully attached (typically 2.5 hours) to ensure that nutrients are replenished, and the channels do not dry out.
 During a gravity wash, the medium should be observed to flow through the channel and outflow into the outlet.
- Because two different media are being used, they must be separated by keeping them in different filtered tips.
- Chips can be maintained overnight under static condition using pipette tips, as depicted below.

Action
With a P200 pipette, gently insert 200 µL of Complete hGMVEC
Culture Medium into the bottom channel inlet until a small droplet
appears on the outlet, or until a bubble is ejected through the outlet.
While the inlet has a pipette tip with medium, carefully place another
fresh, sterile, 200-µL pipette tip into the chip outlet port. Once you see
the medium flow in the outlet tip, gently release the pipette tip in the
inlet port.
Note: Avoid pushing tips all the way down and release the tip gently
using the pipettor's tip ejector—avoid forceful release so that the tip
does not block the channel.
Repeat Step 3 for the top channel using warm Complete hRPTEC
Culture Medium (see Figure 10).

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 48 of 72

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 49 of 72

Day 1: Chips to Pods, and Pods to Zoë

Overview

Goals

- De-gas and equilibrate media
- Connect chips to Pods
- Connect Pods to Zoë

Required Materials

- Installed and qualified Zoë-CM2 Culture Module
- Prepared chips
- Pods (sterile), 1 per chip
- Tray, 1 per 6 chips
- Steriflip™ filtration unit: PVDF filter 0.45 µm (sterile)
- Vacuum source (minimum -70 kPa)
- · Serological pipettes
- · Pipettors and filtered tips
- 37°C water or bead bath
- 70% ethanol

Key Steps

Topic	See Page
Prepare Complete hGMVEC Culture and Maintenance	49
Media for Degassing	
Prepare Complete hRPTEC Maintenance Media for	50
Degassing	
Gas Equilibration of Media	51
Prime Pods	53
Wash Chips	56
Chips to Pods	57
Pods to Zoë	58

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 50 of 72

Prepare Complete hGMVEC Culture and Maintenance Media for Degassing

Before You Begin

The culture of hGMVECs will continue in Complete hGMVEC Culture Medium for Chip-to-Pod and Pod-to-Zoë connection (Day 1); hGMVECs culture medium will be switched to Complete hGMVEC Maintenance Medium after the second Regulate Cycle is completed or until a fully matured monolayer is formed (generally after 3 days).

Optional: Degassing media after chips are connected to Pods may help prevent bubble formation.

Complete hGMVEC Culture and Maintenance Medium

Complete hGMVEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hGMVEC	45 mL	-	-	Recipe	-
Culture Medium					
FBS	5 mL	-	10%	Sigma	F4135

Complete hGMVEC Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hGMVEC	49.75 mL	-	-	Recipe	-
Culture Medium					
FBS	0.25 mL	-	0.5%	Sigma	F4135

- Store the Complete hGMVEC Culture and Maintenance Medium at 4°C.
- Use the Culture and Maintenance Medium within 7 days of preparation.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 51 of 72

Prepare Complete hRPTEC Maintenance Media for Degassing

Before You Begin The hRPTECs will now be kept in maintenance media for the duration of Organ-Chip culture.

hRPTEC Maintenance Media

Base hRPTEC Maintenance Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
REBM™ Renal Epithelial	492.45 mL	-	-	Lonza	CC-3191
Cell Growth Basal Medium					
REGM™ SingleQuots™				Lonza	CC-4127
Kit containing:					
Human Epidermal Growth	0.05 mL	-	-	-	-
Factor (hEGF)					
Insulin	0.5 mL	-	-	-	-
Hydrocortisone	0.5 mL	-	-	-	-
Transferin	0.5 mL	-	-	-	-
Triiodothyronine	0.5 mL	-	-	-	-
Epinephrine	0.5 mL	-	-	-	-
Pen / Strep	5 mL	-	1%	Sigma	P4333

- Store the Base hRPTEC Maintenance Medium at 4°C.
- Use the Base hRPTEC Maintenance Medium within 30 days of preparation.

Note: The hEGF concentration is now reduced 10-fold compared to the base culture media prepared on Day -5 that was used for flask culture and cell seeding.

Complete hRPTEC Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.	
Base hRPTEC	49.75 mL	-	-	Recipe	-	
Maintenance Medium				Above		
FBS	0.25 mL	-	0.5%	Lonza (kit		
				from above)		

- Store the Complete hRPTEC Maintenance Medium at 4°C.
- Use the Complete hRPTEC Maintenance Medium within 7 days of preparation.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 52 of 72

Gas Equilibration of Media

CAUTION

The media equilibration step is imperative to successfully culture Organ-Chips. Omitting this step will cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.

Before You Begin

- The media equilibration step is critical to the success of Organ-Chip culture.
 Omitting this step will eventually lead to bubble formation in the chip, the Pod, or both, which will in turn cause irregular flow and negatively impact cell viability.
- Ensure the medium is outside of a warmed environment (such as an incubator or bath) for no longer than 10 minutes, as gas equilibrium can become compromised when medium is allowed to cool.
- If the vacuum pump is not located close to the water bath (e.g., inside the BSC), it is recommended to place some clean water warmed at 37°C inside the BSC to minimize cooling during the media equilibration step.

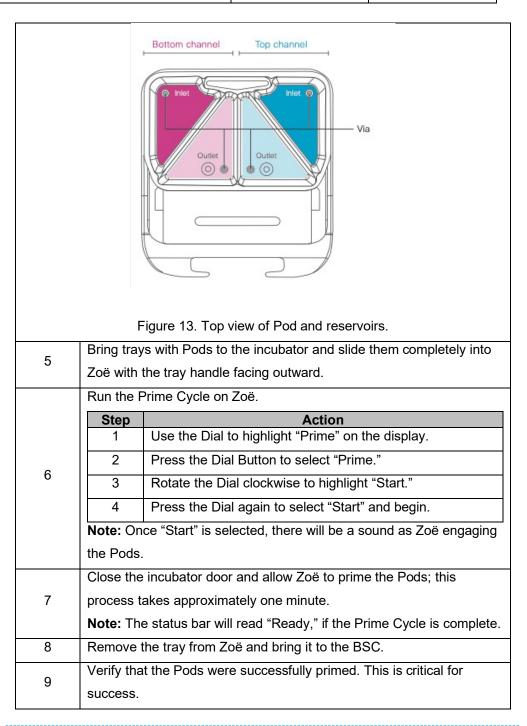
Step		Action		
	Determin	e the total volume of media needed for chip connection:		
1	Multiply tl	he total number of chips by the volume of media needed per		
	chip (number of Chip x 4.3 mL)			
2	Aliquot th	e total Complete Culture or Maintenance Medium needed in		
2	separate	50-mL conical tubes.		
3	Warm the 50-mL conical tubes of media at 37°C in a water or bead			
3	bath for at least 1 hour.			
	Immediately connect the 50-mL tube containing each warmed			
	medium to a Steriflip unit using the following steps:			
	Step	Action		
4	1	Attach each conical tube containing warmed media to a		
	Steriflip unit (see Figure 11).			
	With the unit "right-side up" (medium in the bottom conica			
	2	tube), apply vacuum for 10 seconds.		

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 53 of 72

		Invert the Steriflip-connected tubes, and check that the			
		medium begins to pass from the top conical tube to the			
		bottom one.			
		Note: The vacuum must operate at a minimum of -70			
	3	kPa. At this pressure, it should take about 2 seconds for			
		10 mL of media to flow through the filter. If it takes longer,			
		stop and refer to the "Media takes too long to pass			
		through Steriflip" in the troubleshooting section.			
	4	Leave the filtered medium under vacuum for five minutes			
	Steriflip				
5	Figure 11. Steriflip unit 5 Remove the vacuum tubing from the Steriflip units.				
	Separate the conical tubes containing media from the Steriflip unit,				
	and immediately place them into the incubator with the caps loose.				
6		nimize the time media is outside of the incubator when the			
		ing prepared to maintain the correct temperature. This is			
		ensure chip success.			

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 54 of 72

Prime Pods


CAUTION

Ensuring successful Pod priming is best practice for successful liquid-liquid connection between the chip and Pod. Failure to do so can cause bubbles to form in the chip, in the Pod, or both, which will in turn negatively impact cell viability and result in irregular flow.

Step	Action			
1	Sanitize the exterior of the Pod packaging and trays with 70% ethanol,			
ľ	wipe them, and transfer them to the BSC.			
2	Open the Pod package and place the Pods into the trays. Orient the			
	Pods with the reservoirs facing the back of the tray (see Figure 12).			
Pods ————————————————————————————————————				
	Figure 12. Chips and Pods inserted into a tray.			
	Pipette 3 mL of pre-equilibrated, warm media to each inlet reservoir. In			
3	the top channel inlet reservoir, add Complete hRPTEC Maintenance			
Medium; in the bottom channel inlet reservoir, add Complete				
	hGMVEC Culture Medium.			
4	Pipette 300 μL of pre-equilibrated, warm media to each outlet			
4	reservoir, directly over each outlet Via (see Figure 13).			

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 55 of 72

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 56 of 72

Prime Pods, Continued

Pod Priming Verification

Take out the tray and inspect the top of the Pods (See Figure 14) to verify the presence of small media droplets through the Pod window at all four fluidic ports.

If	Then
Droplets are not visible through the top	Re-run the Prime Cycle on those Pods.
window	If the issue persists, contact Emulate
	Support.
Any outlet port does not show a	Ensure Step 4 of "Prime Steps" has
droplet, but the inlet port does.	been performed correctly.
Any media escaped onto the tray (this	Clean the tray using a wipe sprayed
may occur more often by the outlet	with 70% ethanol.
ports).	

Figure 14

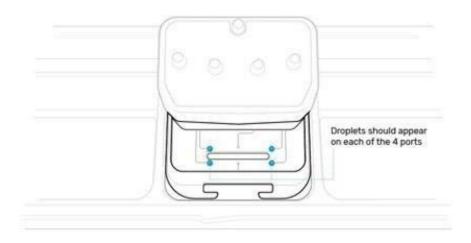


Figure 14. Top view of chip in Pod with fluidic posts covered with droplets.

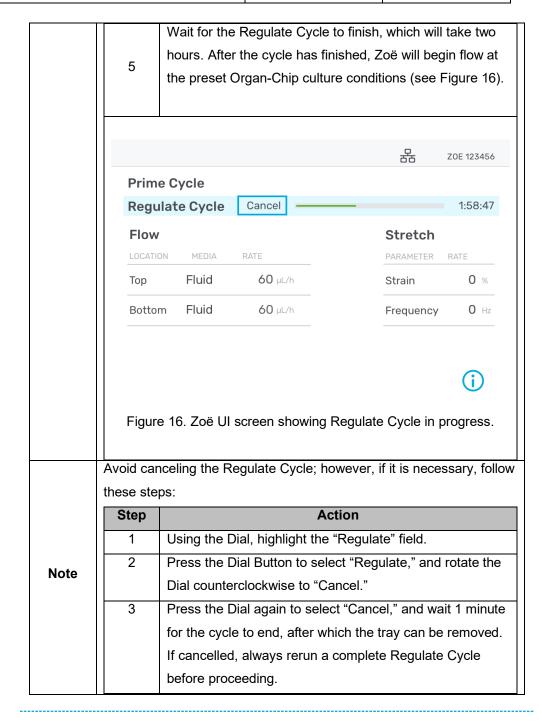
TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 57 of 72

Wash Chips

Step	Action
1	Transfer the seeded chips in a 120 x 120-mm square dish from the
'	incubator to the BSC.
2	Remove the pipette tips from the chip inlet and outlet ports.
2	Gently wash each top channel with warm, equilibrated Complete
3	hRPTEC Maintenance Medium to remove any bubbles.
4	Place small droplets of equilibrated Complete hRPTEC Maintenance
4	Medium on each chip's inlet and outlet port.
E	Gently wash each chip's bottom channel with warm, equilibrated
5	Complete hGMVEC Culture Medium to remove any possible bubbles.
6	Place small droplets of equilibrated Complete hGMVEC Culture
6	Medium on each chip's bottom channel inlet and outlet ports.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 58 of 72

Chips to Pods


Step	Action
	Hold one chip (in a chip carrier) in the dominant hand and one Pod in
1	the other hand. Slide the chip carrier into the tracks on the underside
	of the Pod until the chip carrier has fully seated.
2	Place a thumb on the chip carrier tab. Gently, but firmly, press the tab
2	in and up until it engages with the Pod.
3	Aspirate any excess media on the chip surface from the Pod window.
4	Place the Pod and connected chip onto the tray.
5	Repeat Steps 1–4 for each Pod and chip carrier.
6	Confirm that there is sufficient media in each Pod inlet and outlet
0	reservoir. Also, ensure that the Pod lids are flat and secure.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 59 of 72

Pods to Zoë

Step			Act	ion	
_	Immediately place the trays holding Pods and chips into Zoë to				
1	prevent media from cooling and losing its gas equilibration.				
	Program	the appropr	iate Organ-Ch	ip culture conditions	on Zoë.
	These co	nditions will	start as soon	as the Regulate Cyc	e is complete.
2	For huma	an co-culture	e Proximal Tub	oule Kidney-Chips, se	et the flow rate
	to 60 µL	/ h for both o	channels.		
	Once Org	gan-Chip cul	Iture condition	s are set, run the Re	gulate Cycle.
	Step			Action	
	1			the "Regulate" field.	
	2	Press the	Dial Button to	select "Regulate," ar	d rotate the
		Dial clock	wise to "Start."		
		Press the	Dial again to s	select "Start" and beg	in the
	3	Regulate (Cycle (see Fig	ure 15).	
		Note: Onc	e start is selec	cted, there will be a s	ound as Zoë
		engages t	he Pods.		
				윰	ZOE 123456
	Prim	e Cycle			
3	Regu	ılate Cycle	Start		
	Flow	/		Stretc	h
	LOCATI	ON MEDIA	RATE	PARAMETE	R RATE
	Тор	Fluid	$00~\mu L/h$	Strain	0 %
	Botto	m Fluid	00 µL/h	Frequen	су О Ни
					(i)
	Figure 15. Zoë UI showing Regulate Selection				
	4 Make sure the "Activation" button is glowing blue.				

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 60 of 72

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 61 of 72

Day 2+: Chip Maintenance and Sampling

Overview

Goals

- Maintain chips in Zoë
- Inspect cell culture
- Collect samples for analysis

Required Materials

- Chips in Pods
- Cell culture media

Key Steps

Topic	See Page
Maintenance and the Regulate Cycle	61
Sampling and Media Replenishment	62

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 62 of 72

Maintenance and the Regulate Cycle

Action			
eginning the			
ng the silver			
is stops flow and			
SC.			
orm a Via wash on			
ring steps:			
eservoir directly on			
nat may be			
our Pod reservoirs.			
field.			
field. e," and rotate the			
e," and rotate the			
e," and rotate the			
e," and rotate the tart" and begin the			
e," and rotate the tart" and begin the			
e," and rotate the tart" and begin the			
e," and rotate the tart" and begin the be a sound as			
e," and rotate the tart" and begin the be a sound as wing blue.			
e," and rotate the tart" and begin the be a sound as wing blue. hich will take two will begin flow at			
e," and rotate the tart" and begin the be a sound as wing blue. hich will take two will begin flow at s.			

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 63 of 72

Sampling and Media Replenishment

CAUTION

Failure to replenish media on time will cause air to be introduced into the Pod and chip, which ultimately results in cell death and may cause damage to Zoë Culture Module. Do not fill reservoir past 4 mL of the total volume during replenishment.

Step	Action	
1	Pause Zoë by pressing the silver "Activation" button.	
2	Remove the trays and place them into the BSC.	
3	Visually inspect each chip for bubbles.	
	Using a microscope, assess the morphology and viability of cells in	
	the chips. Capture representative images at 10X or 20X magnification	
4	at the following locations (see Figure 17):	
7	Inlet Junction	
	Center of Channel	
	Outlet Junction	
	Figure 17. Chip with marked locations for image capture.	
5	Remove Pod lids and collect effluent from the Pod outlet reservoirs at	
	the indicated regions while not disturbing the Pod reservoir Vias.	
	Gently aspirate any medium not collected for analysis, ensuring that a	
6	thin liquid film still covers the reservoir Vias so that no air is	
	introduced into them.	

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 64 of 72

_		
		Refill the Pod media reservoirs with the appropriate fresh complete
	7	culture or maintenance medium. Then, perform a Via wash by
	7	pipetting 1 mL of the medium in the reservoir directly over the top of
		the Via to dislodge any bubbles.
ŀ	8	Replace the Pod lids and return the trays to Zoë.
L	<u> </u>	Tropiaco ano i ou nuo ana rotam ano auyo to 200.
		Press the silver "Activation" button to resume pre-set Organ-Chip
	9	culture conditions. Zoë will engage when the "Activation" button glows
		blue.

.....

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 65 of 72

Part VII. Troubleshooting

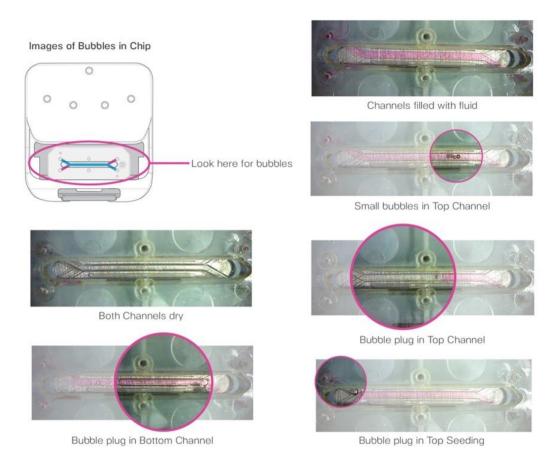
Overview

Troubleshooting

Issue	Section	Step	Recommendation
Bubbles are	Any step related	Any step related to	Wash the channel with the appropriate
present in	to chip handling,	chip handling,	solution until all bubbles have been
channel	such as Chip	such as Chip	removed. If bubbles persist, it may be
	Activation, ECM	Activation, ECM	helpful to aspirate the channel dry and
	coating, and cell	coating, and cell	slowly re-introduce solution.
	seeding.	seeding.	
Bubbles in the	Any step related	Any step related to	Since the chip material is hydrophobic,
ports upon	to chip handling,	chip handling,	bubbles could get trapped at the ports.
introduction of	such as Chip	such as Chip	Dislodge bubbles using pipette tip or
media into the	Activation, ECM	Activation, ECM	aspirate the channels and reintroduce
chip	coating, and cell	coating, and cell	appropriate media.
	seeding.	seeding.	
Media takes too	Chips to Pods	Equilibration of	Vacuum pressure is not reaching -
long to pass	and Pods to Zoë	Media	70kPa. Find an alternate vacuum
through Steriflip			source with the appropriate pressure.
			If this solution is unavailable, leave the
			media in the incubator with the caps
			loose for at least 16 hours (preferably
			overnight) before adding to Pods.
Pods do not	Chips to Pods	Prime Pods	If Pods do not prime on the first
prime	and Pods to Zoë		attempt, ensure that medium covers all
			Pod Vias, and run the Prime Cycle
			again. If the problems persist, record
			the Pod lot number, and replace it with
			a new Pod.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 66 of 72

Screen is frozen	Chips to Pods	Any step related to	Power off Zoë and turn it on again. If	
or unresponsive	and Pods to	Organ-Chip	the problem persists, contact our	
	Zoë; Maintaining	culture on Zoë	support team.	
	and Sampling			
Pods stuck in	Maintaining and	Any step related to	The Pod lid is not secured. Try	
Zoë	Sampling	Organ-Chip	wiggling the tray to the right and left as	
		culture on Zoë	you slide it out while keeping it level. If	
			the problem persists, contact our	
			support team.	
Pods not flowing	Maintaining and	Maintenance and	There is inherent variability with Zoë;	
properly	Sampling	Regulate	however, large fluctuations and major	
or evenly;			flow issues primarily result from	
Bubbles			bubbles. To remove bubbles and allow	
observed in chip			for flow, remove the chip from the Pod,	
			flush the chip with media, re-prime	
			Pod with degassed media, reconnect	
			the chip to the Pod, and run the	
			Regulate Cycle.	


Causes of **Bubbles**

Potential Root If there is a high failure rate due to bubbles, or if bubbles are persistent, despite performing the above mitigation step(s) (See Figure 18 on the next page), check for the following:

If	Then
Medium is not sufficiently equilibrated	Be sure to follow media preparation
before adding to Pods	steps in section "Gas Equilibration of
	Media".
Vacuum for Steriflip too weak	Ensure that 10mL media passes
	through the Steriflip in ~10 seconds.
Incorrect Steriflin used	Confirm the correct Steriflip unit is
Incorrect Steriflip used	being used (Millipore SE1M003M00).
Medium not warmed correctly before	Be sure to follow the media preparation
Steriflip step	steps in the section "Gas Equilibration
	of Media".
Insufficient priming	Disconnect the chip and re-prime the
	Pod.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 67 of 72

Figure 18 Images of Bubbles in an Organ-Chip

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 68 of 72

Part VIII: Appendices

Overview

Contents

Topic	See Page
Reagent Aliquots	68
Media	69

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 69 of 72

Reagent Aliquots

Reagents

Collagen-IV (ECM)

Reagent	Conc. [Stock]	Amount	Volume	Solvent
Collagen-IV	1 mg / mL	5 mg	5 mL	DPBS

- Resuspend 5 mg Collagen-IV in 5 mL of DPBS according to the manufacturer's instructions.
- Aliquot to single-use volumes and store at -20°C.

Matrigel (Overlay)

Reagent	Amount	Volume
Matrigel	5 mg per aliquot	Varies per lot

The Matrigel bottle must be thawed overnight on ice either in the back of the 2–6°C refrigerator or in a cold room. Add water to ensure the ice is slushy, as the solution gels rapidly at temperatures above 10°C. Before aliquoting, use pipettes, tips, and tubes prechilled to -20°C.

- After the Matrigel is thawed, aliquot Matrigel to the desired volume (e.g., 100–200 μL) based on the specific stock concentration.
- Store aliquots at -20°C.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 70 of 72

Media

hGMVEC Culture Media

Base hGMVEC Culture Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Normal Blood	485 mL	-	-	Cell Systems	4N3-500-R
Glucose Level					
Without Serum					
Culture-boost-	10 mL	-	2%	Cell Systems	4CB-500-R
R					
Pen / strep	5 mL	-	1%	Sigma	P4333

- Store the Base hGMVEC Culture Media at 4°C.
- Use the Base hGMVEC Culture Media within 30 days of preparation.

Complete hGMVEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hGMVEC	45 mL	-	-	Recipe above	-
Culture Medium					
FBS	5 mL	-	10%	Sigma	F4135

- Store the Complete hGMVEC Culture Medium at 4°C.
- Use the Complete hGMVEC Culture Medium within 7 days of preparation.

hGMVEC Maintenance Medium

Complete hGMVEC Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hGMVEC	49.75 mL	-	-	Recipe Above	-
Culture Medium					
FBS	0.25 mL	-	0.5%	Sigma	F4135

- Store Complete hGMVEC Maintenance Medium at 4°C.
- Use within 7 days of preparation.

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 71 of 72

Media, Continued

.....

hRPTEC Culture Media

Base hRPTEC Culture Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
REMB™ Renal	492 mL	-	-	Lonza	CC-3191
Epithelial Cell Growth					
Basal Medium					
REGM™				Lonza	CC-4127
SingleQuots™ Kit					
containing:					
Human Epidermal Growth Factor	0.5 mL	-	-	-	-
(hEGF)					
• Insulin	0.5 mL	-	-	-	-
Hydrocortisone	0.5 mL	-	-	-	-
Transferin	0.5 mL	-	-	-	-
Triiodothyronine	0.5 mL	-	-	-	-
Epinephrine	0.5 mL	-	-	-	-
Pen / Strep	5 mL	-	1%	Sigma	P4333

- Store Base hRPTEC Culture Medium at 4°C.
- Use Base hRPTEC Culture Medium within 30 days of preparation.

Note: Do not use gentamicin sulfate from the REGM™ SingleQuots™ Supplement Pack.

Complete hRPTEC Culture Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hRPTEC	49.75 mL	-	-	Recipe above	-
Culture					
Medium					
FBS	0.25 mL	-	0.5%	Lonza (from	CC-4217
				kit above)	

- Store Complete hRPTEC Culture Medium at 4°C.
- Use Complete hRPTEC Culture Maintenance within 7 days of preparation.

Continued on next page

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 72 of 72

Media, Continued

hRPTEC Maintenance Media

Base hRPTEC Maintenance Medium (500 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
REBM™ Renal Epithelial	492.45 mL	-	-	Lonza	CC-3191
Cell Growth Basal					
Medium					
REGM™ SingleQuots™				Lonza	CC-4127
Kit containing:					
Human Epidermal	0.05 mL	-	-	-	-
Growth Factor (hEGF)					
• Insulin	0.5 mL	-	-	-	-
Hydrocortisone	0.5 mL	-	-	-	-
Transferin	0.5 mL	-	-	-	-
Triiodothyronine	0.5 mL	-	-	-	-
Epinephrine	0.5 mL	-	-	-	-
Pen / Strep	5 mL	-	1%	Sigma	P4333

- Store the Base hRPTEC Maintenance Medium at 4°C.
- Use the Base hRPTEC Maintenance Medium within 30 days of preparation.

Note: the hEGF concentration is now reduced 10-fold compared to the culture media prepared on Day -5 that was used for flask culture and cell seeding.

Complete hRPTEC Maintenance Medium (50 mL)

Reagent	Volume	Conc. [Stock]	Conc. [Final]	Source	Cat. No.
Base hRPTEC	49.75 mL	-	-	Recipe Above	-
Maintenance					
Medium					
FBS	0.25 mL	-	0.5%	Lonza (kit	-
				from above)	

- Store the Complete hRPTEC Maintenance Medium at 4°C.
- Use the Complete hRPTEC Maintenance Medium within 7 days of preparation.

TITLE	Document EP228	Revision D
Proximal Tubule Kidney-Chip Co-Culture Protocol	Date 05-09-2024	Page 73 of 72

© Emulate, Inc., 2024. All rights reserved.

Emulate®, the Emulate logo, Human Emulate System® and Orb-HM1® are registered trademarks of Emulate, Inc.

Zoë®, Zoë-CM2®, Zoë-CM1®, S-1®, Chip-S1®, Pod®, ER-1® and ER-2® are trademarks of Emulate, Inc.

Steriflip® is registered trademarks of Merck KGaA, Darmstadt, Germany.

Eppendorf® and Eppendorf Tubes® are registered trademarks of Eppendorf AG, Germany.

Culture Boost™ is a trademark of CS Insights, Inc.

Fungin™ is a trademark of Invivogen Corporation.

Attachment Factor™ is a trademark of CS Insights, Inc.

Matrigel® is a registered trademark of Corning, Inc.

Parafilm® is a registered trademark of Bemis Company, Inc.

The technology disclosed in this document may be covered by one or more patents patent applications owned by or licensed to Emulate, Inc. No license is granted herein. Further information is available by contacting Emulate.